

INTELLIGENT COMMUNICATION PROCESSING SYSTEM

MODEL 59660

OPERATION AND MAINTENANCE MANUAL

INCLUDING:

ICP/Host Interface (P/N 990-60049-0101)

ICP Multiplexer (P/N 990-59670-0101)

Digital to Analog Converter (P/N 990-59856-0101)

Document Number 990-59660-9800

59660d1a.doc

February 2000

TABLE OF CONTENTS

1. GENERAL INFORMATION	1-1
1.1 PURPOSE OF THE SYSTEM	11
1.2 DESCRIPTION OF SYSTEM	
1.3 DESCRIPTION OF SYSTEM OPERATION	
2. DESCRIPTION OF FUNCTIONAL MODULES	2-1
2.1 GENERAL	
2.2 MULTIPORT CONTROLLER	
2.2.1 General Description - Multiport Controller	
2.2.2 Controls and Indicators - Multiport Controller	
2.2.3 Specifications - Multiport Controller	
2.2.4 Multiplexer Module, P/N 990-59670-0101	
2.2.4.1 Controls and Indicators - Multiplexer Module	
2.2.4.1.1 Multiplexer I.D. Jumpers	
2.2.4.1.2 1 PPS Polarity Jumper.	
2.2.4.1.3 RS-232 Port Configuration Jumpers.	
2.2.4.1.4 GPS Receiver Power Jumpers.	
2.2.4.1.5 Reserved Jumpers - Multiplexer Module.	
2.2.4.1.6 Reset Button - Multiplexer Module	
2.2.4.1.7 Status Indicators - Multiplexer Module	
2.2.4.2 Connectors - Multiplexer Module 2.2.4.2.1 CSMA Protocol Connectors - Multiplexer Module	
2.2.4.2.1 CSMA Protocol Connectors - Multiplexer Module.	
2.2.4.2.2 RS252 Connections Connectors - Multiplexer Module.	
2.2.4.2.5 Tower connector - Multiplexer Module.	
2.2.4.5 Specifications - Multiplexer Module 2.2.5 32 CHANNEL DIGITAL TO ANALOG CONVERTER	
2.2.5 52 CHANNEL DIGITAL TO ANALOG CONVERTER	
2.2.5.1 Connectors - 32 Channel D/A Module	
2.2.5.2 Power Connector - J1 - 32 Channel D/A Module.	
2.2.5.2.2 Digital Data Input and Control Connector-J3-32 Channel D/A Module	
2.2.5.2.3 Analog Output Connectors - J2 and J4 - 32 Channel D/A Module	
2.2.5.3 Specifications - 32 Channel D/A Module	
2.3 ICP HOST INTERFACE MODULE	
2.3.1 Controls and Indicators - Host Interface Module	
2.3.1.1 Interrupt Level Selection - Host Interface Module.	
2.3.1.2 Output Port Address Selection - Host Interface Module	
2.3.1.3 One PPS Input Polarity Select - Host Interface Module.	
2.3.1.4 Dual Port Memory Base Address.	
2.3.2 Connectors - Host Interface Module	
2.3.2.1 J3 - 32 Channel D/A Output Connections - Host Interface Module.	
2.3.2.2 J5 - CSMA Protocol Connectors - Host Interface Module.	
2.3.3 Specifications - Host Interface Module	2-24

3. INSTALLATION

3.1 GENERAL	
3.2 UNPACKING AND INSPECTION	
3.3 INSTALLATION PLANNING	
3.3.1 Host Computer Recommended Performance	
3.3.2 Equipment Location	
3.4 INSTALLATION OF HOST INTERFACE MODULE	
3.4.1 Determination of Available Host Resources	
3.4.2 Registry of Selected System Parameters	
3.4.3 ICP Host Interface Module Configuration	
3.4.4 Physical Installation of the Host Interface Module	
3.5 INSTALLATION OF MULTIPORT CONTROLLER	
3.6 ICP SYSTEM CABLING	
3.7 HOST COMPUTER SOFTWARE INSTALLATION	

4. OPERATION

4-1

3-1

4.1 GENERAL	
4.2 ICP SOFTWARE OPERATION	
4.2.1 ICP Configuration	
4.2.1.1 ICP Configuration - Station Parameters	
4.2.1.1.1 Station Parameters - Names	
4.2.1.1.2 Station Parameters - Communications	
4.2.1.1.3 Station Parameters - Port/Chan	
4.2.1.1.4 Station Parameters - Remotes	
4.2.1.2 ICP Configuration - Analog I/O	
4.2.1.3 ICP Configuration - Event Detector Parameters	
4.2.1.3.1 STA/LTA Event Detector Definition	
4.2.1.3.2 ICP Level Detector Definition	
4.2.2 Record	
4.2.2.1 ICP Event Record Control	
4.2.2.2 ICP Continuous Record Control	
4.2.3 Location	
4.3 DATA FILE STRUCTURES	
4.4 WAVEFORM DATA DISPLAY	

ii

4.5 ICP REAL TIME DISPLAY	
4.5.1 Channel Selection	
4.5.2 Offset Adjustment	4-29
4.5.3 Display	
4.5.4 Time Range	
4.5.5 View Scale	
4.5.6 Pointer Position	4-32
4.5.6.1 X Second	4-32
4.5.6.2 Y Counts	
4.5.7 Time Marker	4-32
4.5.8 Window Parameters	4-33
4.5.8.1 Range	4-33
4.5.8.2 Curve Color	
4.5.8.3 Background Color	

5. MAINTENANCE

5-1

6. SCHEMATIC DIAGRAMS	6-1
-----------------------	-----

7. PARTS LISTS AND ASSEMBLY DRAWINGS 7-1
7-1. Assembly and Parts List, ICP <u>System</u> , Model 990-59660-01017-2
7-2. Assembly Parts List, ICP Multiplexer Module, 990-59670-01017-8
7-3. Assembly And Parts List, 32 Channel D/A Module, 990-59856-0101
7-4. Assembly And Parts List, ICP Host Interface Module, 990-60049-0101
7-5. Assembly And Parts List, ICP Multiplexer to Multiplexer Daisy Chain Cable, 990-60156-01017-27
7-6. Assembly And Parts List, ICP Multiplexer to Host Interface Cable, 990-60156-01027-29
7-7. Assembly and Parts List, Icp Host Interface Module to D/A Module Interface Cable, 990-60157-01017-317-31
7-8. Assembly and Parts List, GTS-One To Multiplexer Module Interface Cable, 990-60172-0101

APPENDIXES

CSMA PROTOCOL	APPENDIX A
DTS DATA FORMAT	APPENDIX B
ICP SYSTEM DIGITAL FILTER DESCRIPTIONS	APPENDIX C
HOW TO GENERATE AN ICP LOCATION RESPONSE TABLE	APPENDIX D
CONFIGURATION REQUIREMENTS FOR THE DR-24	APPENDIX E

TABLE OF FIGURES

FIGURE 1-1. TYPICAL ICP SYSTEM CONFIGURATION.	1-2
FIGURE 2-1. MULTIPORT CONTROLLER FRONT AND REAR PANEL VIEWS.	2-3
FIGURE 2-2. MULTIPLEXER MODULE CONTROLS, INDICATORS AND CONNECTORS.	
FIGURE 2-3. 32 CHANNEL D/A MODULE CONNECTOR LOCATIONS.	
Figure 2-4. Controls, Indicators And Connectors Of The Host Interface Module.	
FIGURE 3-1. TYPICAL ICP INTERCONNECTION DIAGRAM.	3-6
FIGURE 3-2. MULTIPORT CONTROLLER INTERNAL MODULE POSITIONS.	3-7
FIGURE 4-1. ICP STARTUP SCREEN	
FIGURE 4-2. INITIAL ICP SCREEN DISPLAY	
FIGURE 4-3. ICP <u>C</u> ONFIGURE PULL DOWN MENU.	
FIGURE 4-4. ICP STATION PARAMETERS MENU.	
FIGURE 4-5. STATION NAME COMPONENT DEFINITION PULL DOWN WINDOW.	4-5
FIGURE 4-6. ICP MULTIPLEXER PORT DEFINITION SCREEN.	4-6
FIGURE 4-7. ICP PORT-CHANNEL DEFINITION SCREEN.	4-8
FIGURE 4-8. REMOTE STATION DEFINITION SCREEN.	. 4-10
FIGURE 4-9. ICP ANALOG OUTPUT CHANNELS DEFINITION SCREEN.	. 4-11
FIGURE 4-10. EVENT DETECTOR PARAMETERS	
FIGURE 4-11. ICP STA/LTA DETECTOR DEFINITION SCREEN	4-13
FIGURE 4-12. ICP LEVEL DETECTOR DEFINITION MENU.	
FIGURE 4-13. ICP RECORD CONTROL PULL DOWN.	
FIGURE 4-14. ICP EVENT RECORD CONTROL MENU.	
FIGURE 4-15. CONTINUOUS RECORD CONTROL SCREEN.	
FIGURE 4-16 ICP REAL TIME LOCATION CONTROL PARAMETERS MENU	
FIGURE 4-17 ICP REAL TIME DISPLAY SCREEN	
FIGURE 4-18 CHANNEL SELECTION BAR PULL-DOWN SCREEN	
FIGURE 4-19 OFFSET ADJUSTMENT PULL DOWN BAR	
FIGURE 4-20 FROM FILE SELECTION POP UP MENU.	
FIGURE 4-21 SCROLLING TIME MARKER	
Figure 4-22 Range And Color Selection Screen	
FIGURE 6-1. ICP SYSTEM, MODEL NUMBER 990-59660-0101.	6-2
FIGURE 6-2. ICP MULTIPLEXER MODULE, MODEL NUMBER 990-59670-0101 (PAGE 1 OF 3)	
FIGURE 6-3. 32 CHANNEL D/A MODULE, PART NUMBER 990-59856-0101 (PAGE 1 OF 3)	
FIGURE 6-4. ICP HOST INTERFACE MODULE, PART NUMBER 990-60049-0101 (PAGE 1 OF 8)	
FIGURE 6-5. ICP MULTIPLEXER TO MULTIPLEXER MODULE DAISY CHAIN CABLE, P/N 990-60156-0101	
FIGURE 6-6. ICP MULTIPLEXER TO HOST INTERFACE MODULE CABLE, P/N 990-60156-0102	
FIGURE 6-7. ICP HOST INTERFACE MODULE TO D/A MODULE INTERFACE CABLE, P/N 990-60157-0101	
FIGURE 6-8. GTS-ONE TO MULTIPLEXER MODULE INTERFACE CABLE, P/N 990-60172-0101.	
FIGURE 7-1. ICP SYSTEM, MODEL NUMBER 990-59660-0101 (PAGE 1 OF 2).	7-2
FIGURE 7-2. ICP MULTIPLEXER MODULE, MODEL NUMBER 990-59670-0101 (PAGE 1 OF 3)	7-8
FIGURE 7-3. 32 CHANNEL D/A MODULE, PART NUMBER 990-59856-0101 (PAGE 1 OF 3)	
FIGURE 7-4. ICP HOST INTERFACE MODULE, PART NUMBER 990-60049-0101 (PAGE 1 OF 8)	
FIGURE 7-5. ICP MULTIPLEXER TO MULTIPLEXER MODULE DAISY CHAIN CABLE, P/N 990-60156-0101	
FIGURE 7-6. ICP MULTIPLEXER TO HOST INTERFACE MODULE CABLE, P/N 990-60156-0102	
FIGURE 7-7. ICP HOST INTERFACE MODULE TO D/A MODULE INTERFACE CABLE, P/N 990-60157-0101	
FIGURE 7-8. GTS-ONE TO MULTIPLEXER MODULE INTERFACE CABLE, P/N 990-60172-0101	
FIGURE E-1 INITIAL DR-24 SETUP SCREEN	E-1

FIGURE E-2 FUNCTIONS PULL DOWN MENU SCREEN	E-2
FIGURE E-3 CONNECT MENU	E-3
FIGURE E-4 HARDWARE STATUS POP UP SCREEN	E-3
FIGURE E-5 STATE OF HEALTH STATUS WINDOW	E-4
FIGURE E-6 GPS STATUS INFORMATION	E-5
FIGURE E-7 ACQUISITION COMMAND MENU	E-6
FIGURE E-8 RELAYS COMMAND SETUP SCREEN	E-7
FIGURE E-9 COMMUNICATIONS CONFIGURATION MENU	E-8
FIGURE E-10 CHANNEL CONFIGURATION SETUP SCREEN	E-9
FIGURE E-11 TIME CONFIGURATION SETUP SCREEN	E-10
FIGURE E-12 IMMEDIATE CALIBRATION SETUP SCREEN	E-11
FIGURE E-13 SCHEDULE CALIBRATION SETUP SCREEN	E-11

TABLE OF TABLES

TABLE 2-1. MULTIPLEXER MODULE I.D. AND DATA READY JUMPERS.	
TABLE 2-2. MULTIPLEXER MODULE RS-232 PORT CONFIGURATION JUMPERS.	
TABLE 2-3. MULTIPLEXER MODULE STATUS INDICATORS	
TABLE 2-4. MULTIPLEXER MODULE CONNECTOR J1 AND J2 PIN ASSIGNMENTS.	
TABLE 2-5. MULTIPLEXER MODULE RS-232 PORT CONNECTOR PIN ASSIGNMENTS.	
TABLE 2-6. 32 CHANNEL D/A MODULE INPUT CONNECTOR J3 PIN ASSIGNMENTS.	2-14
TABLE 2-7. 32 CHANNEL D/A MODULE OUTPUT CONNECTOR (J2, J4) PIN ASSIGNMENTS	
TABLE 2-8. HOST INTERFACE MODULE INTERRUPT SELECT JUMPERS.	2-19
TABLE 2-9. HOST INTERFACE MODULE OUTPUT PORT ADDRESS SELECTION.	
TABLE 2-10. DUAL PORT MEMORY BASE ADDRESS JUMPERS	2-22
TABLE 2-11. HOST INTERFACE MODULE DIGITAL TO ANALOG PORT CONNECTOR (J3).	2-23
TABLE 2-12. HOST INTERFACE MODULE CONNECTOR J5 PIN ASSIGNMENTS.	
TABLE 3-1. STANDARD ICP System Cable Lengths	3-3
TABLE 3-2. ICP System Cabling.	3-8
TABLE 4-1. ICP MULTIPLEXER PORT DEFINITION MENU ENTRIES.	4-7

OPERATION AND MAINTENANCE MANUAL MODEL 59660 INTELLIGENT COMMUNICATION PROCESSING SYSTEM (ICP)

1. GENERAL INFORMATION

1.1 PURPOSE OF THE SYSTEM

The Intelligent Communications Processor System (ICP) is designed to provide an efficient interface between many remote seismic digitizer systems and a personal computer (PC) based recording and analysis system.

1.2 DESCRIPTION OF SYSTEM

The ICP consists of the ICP/Host Interface, Multiport Serial Controller, and interconnecting cables. The Host Interface module is installed in an AT card slot of a 386 or higher class PC providing a **MicroSoft WindowsNT™** environment. The Multiport Controller, a separate rack mountable or desktop enclosure connects via cable to the Host Interface Module and provides serial link multiplexers for RS-232 serial data inputs and up to thirty two (32) digital to analog output ports. Provision is made for the connection of a precision time source for accurately time tagging incoming data not time tagged at the source.

The Multiport Controller can accommodate from one to four multiplexer module, with each module providing four full duplex, user configurable RS-232 ports, and one, thirty two channel digital to analog converter (DAC) module. One or two Multiport Controllers can be daisy chained to a single Host Interface Module for a maximum aggregate of twenty four serial ports or seventy two seismic data components. A typical ICP system configuration is shown in Figure 1-1.

ICP system operation requires serial digital time code and 1 pulse second (1PPS) inputs synchronized with Universal Time Coordinated (UTC). The serial time stream must be compatible with Trimble Navigation Limited's ASCII Interface Protocol (TAIP). The 1PPS can be either a positive or negative going pulse of at least 10 microsend duration with the leading edge being "on time". The Geotech Instruments GPS-1 or GTS-ONE units meet these requirements and are compatible with the ICP System.

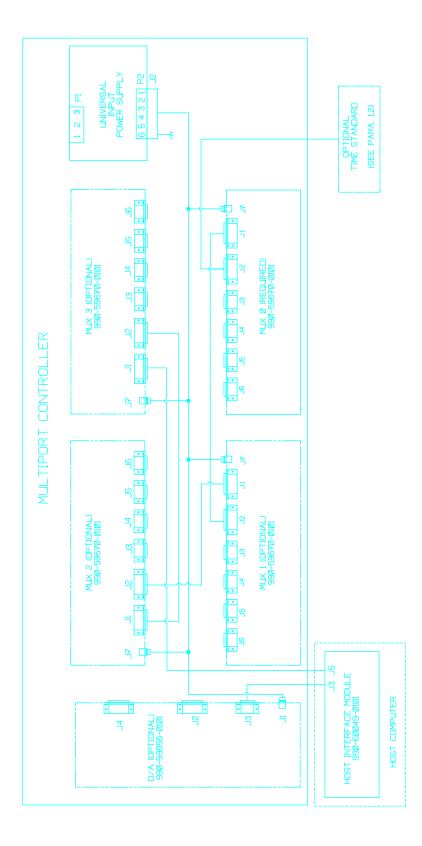


Figure 1-1. Typical ICP system configuration.

1.3 DESCRIPTION OF SYSTEM OPERATION

Digitized and formatted remote site seismic data is telemetered to the central data collection location as a serial RS-232 bit stream. At the central location, each serial data stream, consisting of up to three components of seismic data, is input via one of up to 24 serial ports of the configured Multiport Controller(s), to the Host Interface for ultimate display and archive.

The multiplexer ports are configured from the host computer, and in return port and multiplexer status is provided to the host. The standard multiplexer is programmed to recieve data from any combination of up to four remote stations compatible with any of the following acquisition systems:

- 12 bit Geotech Instruments Model 49.60 Digitizers;
- 16 bit Geotech Instruments Compact Remote Stations (CRS);
- 24 bit Geotech Instruments Digital Telemetry Sysytems (DTS-24);
- 24 bit Geotech Instruments DR Series Systems.

Data from the remote station(s) is time aligned and formatted into one second demultiplexed blocks which is conditioned to be output to the Host Interface. Each port can accommodate up to three components of seismic data.

The Host Interface converts the 24 bit data from the multiplexers to 32 bit data for the host computer, converts the data to floating point for digital filtering and event detection, and performs digital filtering and event detection as prescribed by the user via the system configuration software. Twenty seconds of seismic data, including raw data, short period filtered data and very long period filtered data (greater than 20 second period) is maintained in a RAM spool for the host.

The Host Interface also configures and controls the 32 output channels of the DAC module allowing the user to define the DAC channel output (any of the up to 72 input seismic data channels), data type to be output (raw, SP filtered, LP filtered or event detector input), and the DAC channel output scale factor.

This page intentionally left blank

2. DESCRIPTION OF FUNCTIONAL MODULES

2.1 GENERAL

Schematic diagrams for all functional modules are provided in Section 6 of this document and may be referred to during the review of this section for a more comprehensive understanding of module functionality.

2.2 MULTIPORT CONTROLLER

2.2.1 <u>General Description - Multiport Controller</u>

The Multiport Controller provides the interfaces to the external components of a digital seismic data acquisition system. Three functional module types make up the Multiport Controller. These are:

Multiplexer Module, P/N 990-59670-0101 Digital to Analog Converter Module, P/N 997-59856-0101 Power Supply Module, P/N IPS PU30-12SL.

The functional modules of the Multiport Controller are housed in a rack mountable enclosure. Basic Multiport Controller configuration consists of a power supply module and a single multiplexer module providing capability for interfacing from one to four RS-232 serial data links and an external Geotech Instruments GPS-1 or GTS-ONE time standard to the ICP Host Interface. Optionally the Multiport Controller can be configured for an additional one to three multiplexer modules providing up to 12 additional remote serial data links, and a digital to analog converter module for providing the capability to output up to 32 channels of data to external analog recorders.

The Multiport Controller front panel contains a tinted translucent window permitting viewing of the various status indicators of configured internal modules.

External cable access is provided for direct connection to all installed functional modules.

The Multiport Controller is shown pictorially in Figure 2-1.

2.2.2 <u>Controls and Indicators - Multiport Controller</u>

Multiport Controller controls and indicators are limited to those required for connection, application and monitoring primary electrical power. Rear panel connector J3 provides the input of primary electrical power via a Belden 17250 power cable. Rear panel switch S1 controls the application of primary power and LED DS1 glows red when the switch is on and the power cable is connected to a live AC power main. The Multiport Controller power supply is a wide range input device, operational on any line voltage between 100 and 240 VAC and line frequency from 47 to 63 Hz.

The locations of internal Multiplexer Module indicator LED's (RX, ICP COMM, TX, POWER and 1PPS) are labeled on the front panel of the Multiport Controller. The use and meaning of these indicators is described in a following paragraph.

MECHANICAL CHARACT	ERISTICS
Size (Front Panel)	19 inches wide X 6.969 inches high (48.3 cm X 17.7 cm)
Size (Enclosure)	17.3 inches wide X 10 inches deep X 6.969 inches high (44 cm X 25.4 cm X 17.7 cm)
Weight	15 lbs. (6.8 kg)
ENVIRONMENTAL CHAR	ACTERISTICS
Operating Temperature Storage Temperature Relative Humidity	32 [°] to 122 [°] F (0 [°] to 50 [°] C) -22 [°] to 144 [°] F (-30 [°] to +65 [°] C) 5% to 95% non condensing
POWER REQUIREMENTS	
Voltage	100 to 240 VAC
Frequency	47 to 63 Hertz
Power	Less than 20 Watts

2.2.3 Specifications - Multiport Controller

2.2.4 <u>Multiplexer Module, P/N 990-59670-0101</u>

The ICP Multiplexer accepts input data from up to four RS232 ports, pre-formats the data if necessary and re transmits the data to the ICP controller module over a high speed data link. The high speed data link is a half duplex two wire link combined with interrupt lines. A maximum of five Multiplexer modules can be configured in a single Multiport Controller unit and one ICP Host Controller module manages up to 24 Multiplexer ports.

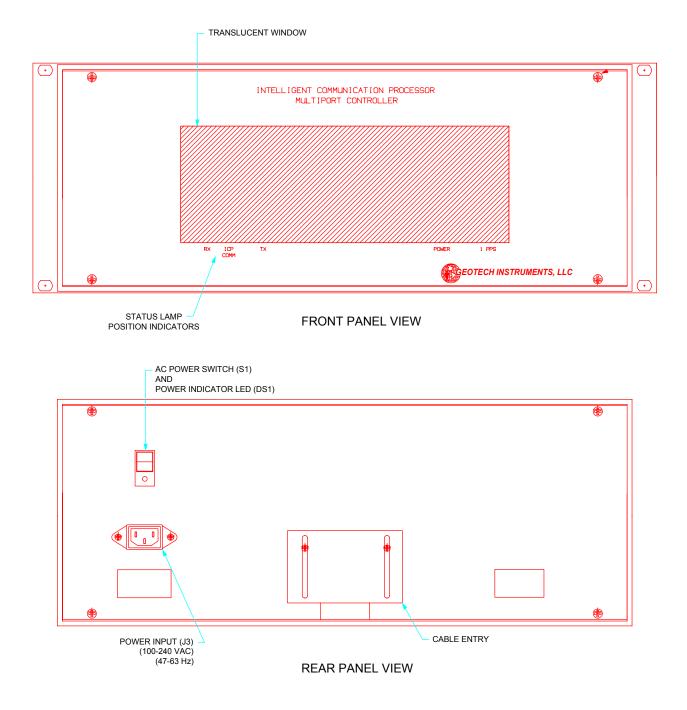
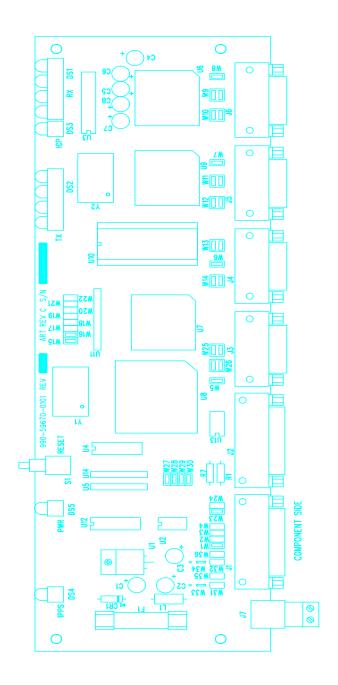


Figure 2-1. Multiport Controller front and rear panel views.

Each multiplexer port is configured through the ICP Controller. Each port can be configured to operate in a Geotech Instruments Digital Telemetry System (DTS) mode. In the DTS mode the multiplexer will time align the data to a 1pps input and reformat the data. The multiplexer compares each port data input to configuration information and will provide status to the controller. When active in this mode diagnostic data is provided to inform the controller of the following faults:

no 1 pps interrupt; no data received; check sum error received.


Standard PC compatible connectors are used for each RS232 port. Two of the board connectors are designed to daisy-chain two or more multiplexer modules to the ICP and an external time source. A simple two wire removable terminal block connector is provided for 12 volt power. Jumpers are used to select the multiplexer's ID number, the polarity of the 1pps signal, and the value of the modem control pull-up resistance, and an optional null modem interface connection. Indicators are provided for RS232 RX and TX, ICP data transmission, 1PPS, and applied power

2.2.4.1 Controls and Indicators - Multiplexer Module

A momentary reset switch is provided to refresh the on board firmware of the Multiplexer Module. Several status LED's provide visual confirmation regarding ICP to Multiplexer handshaking, an active 1pps signal, and applied power. Jumpers provide the user versatility in configuring RS232 I/O port assignments, multiplexer ID selection, 1pps polarity requirements and GPS-1 receiver power. The jumpers, switches and indicator LED descriptions are detailed in the following paragraphs. Figure 2-2 illustrates the location of all controls, indicators and connectors of the Multiplexer Module.

2.2.4.1.1 Multiplexer I.D. Jumpers.

Each Multiplexer Module connected to the same ICP Controller must have a unique I.D. number and data ready flag (DRDYx) in order to communicate with the controller. W1 - W4, W31, W32, W35 and W36 select the data ready interrupt line (DRDY0 through DRDY7). W15, W16 and W17 provide the binary values 0 - 7 for I.D. Each installed Multiplexer Module must have a unique I.D. number and corresponding data ready (DRDYx) jumper installed. The data ready jumpers may be considered mutually exclusive in that each Multiplexer Module may have one and only one data ready jumper installed. Table 2-1 defines the Multiplexer I.D. and data ready jumper installations. Current ICP software does not support multiplexer ID 6 or 7 or their corresponding data ready flags.

2.2.4.1.2 1 PPS Polarity Jumper.

As described in paragraph 1.2, ICP System requires a 1 PPS input from a UTC synchronized timing source. The 1 PPS input is required for time synchronization whenever a DTS remote station is connected to any port. Any precise 1 Hertz clock meeting the specifications defined in paragraph 1.2 synchronized to UTC time may be used. The multiplexer will interrupt on the negative going edge of the clock when jumper W23 is installed and W24 is open. The multiplexer will interrupt on the positive going edge when W23 is open and W24 is installed.

Mux ID	0	1	2	3	4	5	6	7
W1	Jumper	open						
W2	Open	jumper	open	open	open	open	open	open
W3	Open	open	jumper	open	open	open	open	open
W4	Open	open	open	jumper	open	open	open	open
W31	Open	open	open	open	jumper	open	open	open
W32	Open	open	open	open	open	jumper	open	open
W35	Open	open	open	open	open	open	jumper	open
W36	Open	jumper						
W15	Open	jumper	open	jumper	open	jumper	open	jumper
W16	Open	open	jumper	jumper	open	open	jumper	jumper
W17	Open	open	open	open	jumper	jumper	jumper	jumper

Table 2-1. Multiplexer Module I.D. and data ready jumpers.

CAUTION

W23 and W24 jumpers should never be installed simultaneously.

Note: The 1 PPS pulse is normally input from a GPS-1 or GTS-ONE timing source via the multiplexer J1 and output to the ICP Host Interface via Multiplexer Module connector J2. This 1 PPS signal is then buffered and returned to the Multiplexer Module as a negative going pulse with a 100 mSecond pulse duration.

2.2.4.1.3 RS-232 Port Configuration Jumpers.

To configure each of the multiplexer's RS-232 ports, four unique jumpers are provided. The multiplexer's 9-pin male connectors are configured for standard I/O asynchronous output. To reserve RX, TX, RTS and CTS, turn the jumpers 90 degrees relative to card connector edge and configure them in accordance with Table 2-2. The pull-up jumpers are used for the CTS and DCD inputs, however, these inputs are ignored when operating in the DTS mode.

		Reverse	Reverse	Pull up	Pull up
Connector	Port	RX/TX	RTS/CTS	CTS	DCD
J3	А	W26 *	W25 *	W5	W27
J4	В	W14 *	W13 *	W6	W28
J5	С	W12 *	W11 *	W7	W29
J6	D	W10 *	W9 *	W8	W30

Table 2-2. Multiplexer Module RS-232 port configuration jumpers.

* jumper pair

2.2.4.1.4 GPS Receiver Power Jumpers.

W33 and W34 are two position solder jumpers typically configured at the factory. If a GPS-1 receiver or GTS-ONE is used for the precision time source, it should be connected only to J2 of Multiplexer Module 1. W33 and W34 on the Multiplexer Module connected so that DRDY6 and DRDY7 are available at both J1 or J2 (jumpers installed between positions 1 and 2 of W33 and W34). This configuration is used when +12 VDC is not required to power any external timing source. It prevents any accidental connection on the J1 or J2 connectors that may be directed back to the Host Interface Module or an additional daisy-chained Multiplexer Module. If the ICP system uses a GPS-1 receiver jumpers W33 and W34 must be installed in position 2-3. By doing this, +12 VDC becomes available to the receiver at J2 pin 1 and DC common to J2 pin 2. Move jumpers W33 and W34 from position 1 and 2 to 2 and 3 if you need power for a receiver. The 12 VDC power on the Multiplexer Module is fuse protected and labeled F1.

2.2.4.1.5 Reserved Jumpers - Multiplexer Module.

Multiplexer Module jumpers W18 through W22 are reserved for future applications.

2.2.4.1.6 Reset Button - Multiplexer Module.

A reset button is provided on the Multiplexer Module. This switch (S1) performs a hardware reset.

2.2.4.1.7 Status Indicators - Multiplexer Module.

Table 2-3 lists and functionally describes each status indicator of the Multiplexer Module.

CIRCUIT DESIG.	LABE L	DESCRIPTION	FUNCTION
DS1	RX	Four Position Red LED	Serial port data input (receive) activity. LED illuminated indicates a mark condition (+ input level). Indicators are Port A, B, C, D from left to right as viewed from face of LED package
DS2	ТХ	Four Position Amber LED	Serial port data output (transmit) activity. LED illuminated indicates a mark condition (+ output level). Indicators are Port A, B, C, D from left to right as viewed from face of LED package
DS3	ICP	Green LED	Indicates data communication active between Multiplexer Module and Host Interface Module.
DS4	1 PPS	Red LED	LED illuminated indicates 1 PPS input. Normal activity noted by LED flashing at 1 PPS rate.
DS5	PWR	Red LED	LED illuminated indicates +5 VDC logic power is applied to the module.

Table 2-3.	Multiplexer Module status indicators.

2.2.4.2 Connectors - Multiplexer Module

2.2.4.2.1 CSMA Protocol Connectors - Multiplexer Module.

High speed communications between the ICP Module and multiple Multiplexer Modules is via CSMA protocol communications, described in Appendix A of this manual. Multiplexer Module connector J1 is provided to accommodate this protocol. Connector J2 can be configured as an additional CSMA protocol port or as an interface port for GPS-1 or GTS-ONE time reference, depending upon jumper W33 and W34 configuration.

Connectors J1 and J2 are 15 pin 'D' male receptacles. Table 2-4 describes the J1 and J2 pin assignments.

If an external time reference (GPS-1 or GTS-ONE) if used should be connected to J2 of the first module (I.D. = 0) installed. Configure W33 and W34 jumpers as required for the time reference unit. If multiple Multiplexer Modules are configured (currently limited to a maximum of 5), the modules are daisy chained via cable P/N 990-60156-0101, from Module 0 connector J1 to module 1 connector J2, etc.. Connector J1 of the last configured Multiplexer Module shall be cabled to the ICP Host Interface Module via cable P/N 990-60156-0102.

Table 2-4. Multiplexer Module Connector J1 and J2 pin assignments.

Connector	Applicable	
Pin	Jumper	Signal/Function
J1-1		Multiplexer Module 6 data ready (DRDY6)
		(not supported by current software)
J2-1	W33-1,2	Multiplexer Module 6 data ready (DRDY6)
		(not supported by current software)
	W33-2,3	+12 VDC (GPS-1 +V)
J1-2		Multiplexer Module 7data ready (DRDY7)
		(not supported by current software)
J2-2	W34-1,2	Multiplexer Module 7 data ready (DRDY7)
		(not supported by current software)
J2-2	W34-2,3	+12 VDC Common (GPS-1 -V)
J1-3, J2-3		SD + to/from ICP Host Interface Module
J1-4, J2-4		SD - to/from ICP Host Interface Module
J1-5, J2-5		Multiplexer Module 0 data ready (DRDY0)
J1-6, J2-6		Multiplexer Module 1 (if configured) data
		ready (DRDY1)
J1-7, J2-7		Multiplexer Module 2 (if configured) data
		ready (DRDY2)
J1-8, J2-8		Multiplexer Module 3 (if configured) data
		ready (DRDY3)
J1-9, J2-9		1PPS input from ICP Host Interface Module
J1-10, J2-10		Multiplexer Module 4 (if configured) data
		ready (DRDY4)
J1-11, J2-11		Multiplexer Module 5 (if configured) data
		ready (DRDY5)
J1-12, J2-12		TXT serial input to Radio Time Receiver
J1-13, J2-13		RXT serial output from Radio Time Receiver
J1-14, J2-14		Signal Common
J1-15, J2-15		1 PPS output from Time Reference to ICP

Controller

2.2.4.2.2 RS232 Connections Connectors - Multiplexer Module.

Each Multiplexer Module has four ports for accepting RS-232 serial data from remote data acquisition systems. These ports are accommodated via connectors J3 through J6 (Ports A through D, respectively). Each connector is electrically configured identically to a standard PC RS-232, 9 Pin D connector. Jumpers are provided to configure each port as Data Terminal Equipment (DTE) or Data Communications Equipment (DCE). Port connector pin assignments are as shown in Table 2-5 (DTE configuration) unless modified by jumper configuration per paragraph 2.2.4.1.3.

2.2.4.2.3 Power Connector - Multiplexer Module.

+12 VDC power is applied to the Multiplexer Module via connector J7. This connector is a 2 pin header that mates with a 2 position right angle plug block (Precision Connector Designs Part No. ELFP02210). Pin 1 of J7 is on the left looking into the pins (toward the end of the board). The connections are:

Pin 1	+ 12 VDC
Pin 2	Power Return

Table 2-5. Multiplexer Module RS-232 port connector pin assignments.

J3 - J6 Pin	Function
1	DCD (Data Carrier Detect), Input
2	RX (Receive Data), Input
3	TX (Transmit Data), Output
4	DTR (Data Terminal Ready),
	Output
5	Ground
6	Not Used
7	RTS (Request to Send), Output
8	CTS (Clear To Send), Input
9	Not Used

GENERAL		
CPU Data Buffer EPROM Space CPU Clock Input Baud Rate Output Rate	80C152 Communications Controller 32K x 8 CMOS Static RAM 24K Bytes Maximum 16 MHz 38.4 K Baud maximum per port 2.0 M bps maximum	
INPUT SPECIFICATIONS		
Type Number of Ports Baud Rate Data Format	RS232C Asynchronous 4 2400, 4800, 9600, 19200, 38400 baud(see Appendix B) DTS100, 49.70 or 49.60 in DTS Mode (see Appendix B)	
Time Alignment Fractional Delay	In the DTS Mode incoming data is synchronized to the 1 PPS input so that each 1 sec. block output will be synchronized data. Selectable from 0 to 995 milliseconds in 5 ms increments.(see Appendix A)	
OUTPUT SPECIFICATION	IS	
Type Bit Rate Control Lines Data Format	RS-485 CSMA Half Duplex 400,000 bits per second Positive Going Data Ready See Appendix A	
MECHANICAL CHARACTERISTICS		
Size Weight	3 5/8 in. x 10.0 in. x 5/8 in. (92.1 mm x 254 mm x 15.9 mm) 0.46 pounds (0.21 kg)	
ENVIRONMENTAL CHAR	ACTERISTICS	
Operating Temperature Storage Temperature Relative Humidity	0 to + 60 deg C - 30 to + 85 deg C 5% to 95% non condensing	
POWER REQUIREMENTS		
Voltage Current	10 to 13 Volts 120 mA	

2.2.4.3 Specifications - Multiplexer Module

2.2.5 32 CHANNEL DIGITAL TO ANALOG CONVERTER

The ICP 32 Channel D/A Module utilizes an Analog Devices AD766, 16-Bit DSP Dacport chip to provide a simple interface to TI's TMS320C31 DSP which is used on the Host Interface Module. The D/A chip accepts data from the serial port of the DSP and converts the data at 3200 conversions each second. The DSP controls the strobes for demultiplexing the data to 32 outputs at a 100 sample per second rate. Four CMOS deMultiplexer chips provide switching and eight Quad Op-Amps provide track and hold for the outputs. Power supply isolation is provided by four 12 volt to \pm 12 volt DC/DC Converters. Each output is protected with a 100 ohm series resistor. The \pm 3 volt output of the D/A is rescaled to give a \pm 5 volt output for an input of +32767/-32768 counts.

2.2.5.1 Controls and Indicators - 32 Channel D/A Module

The 32 Channel D/A Module does not have nor require any operator configurable controls nor indicators.

2.2.5.2 Connectors - 32 Channel D/A Module

The 32 Channel D/A Module has a power connector, digital data and control input connector, and two 16 channel analog output connectors. These connectors are described physically and functionally in the following paragraphs. Figure 2-3 illustrates the location of connectors of the 32 Channel D/A Module.

2.2.5.2.1 Power Connector - J1 - 32 Channel D/A Module.

The 32 Channel D/A Module power connector, J1 is a 2 pin header that mates with a 2 pin right angle plug block (Precision Connector Designs P/N ELFP02210). Pin 1 of J1 is on the left looking into the pins. The J1 pin assignments are:

Pin 1	12 volts
Pin 2	Power Common

2.2.5.2.2 Digital Data Input and Control Connector - J3 - 32 Channel D/A Module.

D/A module control and data input is via connector J3, a 15 pin "D" type female receptacle. The mating connector is a 15 pin "D" type male plug, and is a part of Cable Assembly DA/ICP, Geotech Instruments P/N 990-60157-0101. The pin out description is shown in Table 2-6.

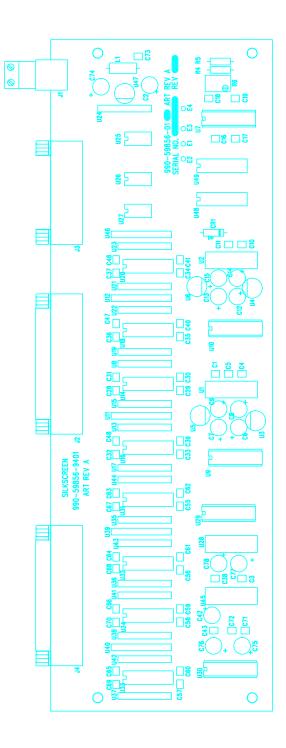


Figure 2-3 32 Channel D/A Module connector locations.

Pin	Signal/Function
J3-1	D/AA0 - Address 0 to D/A 1 to 8 Demultiplexers
J3-2	D/AA1 - Address 1 to D/A 1 to 8 Demultiplexers
J3-3	D/AA2 - Address 2 to D/A 1 to 8 Demultiplexers
J3-4	DMUXE0 - Enable to Demultiplexer 0
J3-5	DMUXE1 - Enable to Demultiplexer 1
J3-6	DMUXE0 - Enable to Demultiplexer 2
J3-7	DMUXE0 - Enable to Demultiplexer 3
J3-8	DMUXE0 - Enable to Demultiplexer 4 (not used)
J3-9	CLKA - Clock to Serial Input 16 bit D/A (Normal Phase)
J3-10	CLKB - Clock to Serial Input 16 bit D/A (Reverse Phase)
J3-11	LEA - Latch Enable to Serial 16 bit D/A (Normal Phase)
J3-12	LEB - Latch Enable to Serial 16 bit D/A (Reverse Phase)
J3-13	DATA - Serial Data (Normal Phase)
J3-14	DATB - Serial Data (Reverse Phase)
J3-15	COMMON

Table 2-6. 32 Channel D/A Module input connector J3 pin assignments.

2.2.5.2.3 Analog Output Connectors - J2 and J4 - 32 Channel D/A Module.

Analog output from the 32 Channel D/A Module is through two 25 pin "D" type female receptacles, J2 and J4. D/A module control and data input is via connectors J2 and J4. These connectors are both 25 pin "D" type female receptacles. Mating connectors are 25 pin "D" type male plugs. Pinouts for connectors J2 and J4 are shown in Table 2-7.

Pin	Signal	Pin	Signal
J2-1	Channel 1 Output	J4-1	Channel 17 Output
J2-2	Channel 2 Output	J4-2	Channel 18 Output
J2-3	Channel 3 Output	J4-3	Channel 19 Output
J2-4	Channel 4 Output	J4-4	Channel 20 Output
J2-5	Channel 5 Output	J4-5	Channel 21 Output
J2-6	Channel 6 Output	J4-6	Channel 22 Output
J2-7	Channel 7 Output	J4-7	Channel 23 Output
J2-8	Channel 8 Output	J4-8	Channel 24 Output
J2-9	Channel 9 Output	J4-9	Channel 25 Output
J2-10	Channel 10 Output	J4-10	Channel 26 Output
J2-11	Channel 11 Output	J4-11	Channel 27 Output
J2-12	Channel 12 Output	J4-12	Channel 28 Output
J2-13	Channel 13 Output	J4-13	Channel 29 Output
J2-14	Channel 14 Output	J4-14	Channel 30 Output
J2-15	Channel 15 Output	J4-15	Channel 31 Output
J2-16	Channel 16 Output	J4-16	Channel 32 Output
J2-17	Analog Common	J4-17	Analog Common
J2-18	Analog Common	J4-18	Analog Common
J2-19	Analog Common	J4-19	Analog Common
J2-20	Analog Common	J4-20	Analog Common
J2-21	Analog Common	J4-21	Analog Common
J2-22	Analog Common	J4-22	Analog Common
J2-23	Analog Common	J4-23	Analog Common
J2-24	Analog Common	J4-24	Analog Common
J2-25	Power Ground	J4-25	Power Ground

Table 2-7. 32 Channel D/A Module output connector (J2, J4) pin assignments.

2.2.5.3 Specifications - 32 Channel D/A Module

GENERAL	
Number of analog outputs Sensitivity Accuracy Full Scale Output Output sample rate Output Impedance Dynamic Range Resolution	32 152.6 microvolts per count 4% of FSR 10 volts peak-peak 100 samples per second 100 ohm 66dB 16 Bits
MECHANICAL CHARACTEI	RISTICS
Size Weight	3 5/8 in. x 10.0 in. x 5/8 in. (92.1 mm x 254 mm x 15.9 mm) TBD
ENVIRONMENTAL CHARA	CTERISTICS
Operating Temperature Storage Temperature Relative Humidity	0 to + 60 deg C - 40 to + 85 deg C 10% to 85% non condensing
POWER REQUIREMENTS	1
Voltage Current	+12.0 (+/- 2) VDC TBD

2.3 ICP Host Interface Module

The ICP/HOST Interface Module uses the Texas Instruments TMS320C31 digital signal processor (DSP) chip running at 25 Mhz., with two 32 bit x 256K RAM modules for application software and data buffers. The DSP also has an 8K x 32 bit EPROM array.

The interface to the ICP Multiplexer Module(s) is an Intel 80C152 communications controller. This chip interfaces to the DSP through four 8 bit x 1024 high speed FIFOs. Both the ICP/HOST and the ICP Multiplexer uses a PSD301 programmable system device. This chip pair provides the interface for connecting a GPS-1 Radio Time Receiver, providing BCD time of year every second.

The interface to the host computer is through dual-port RAM. The size of the dualport RAM is 32K x 16 bits. An I/O port provides memory address selection and hardware control of the module from host software. The I/O port address is jumper selected from 0 hex to 3FF hex. The default setting is 150 hex. The module provides outputs to the 32 Channel Digital to Analog converter via the serial output of the DSP and demultiplexer port control outputs.

The I/O port base address provides access to an 8 bit control port. The bit assignments are:

- Bit 0 least significant bit of memory page
- Bit 1 most significant bit of memory page
- Bit 2 address 14 of memory base address
- Bit 3 address 15 of memory base address
- Bit 4 reset DSP and Communications Controller
- Bit 5 interrupt DSP
- Bit 6 enable bit for memory read and DSP interrupt to host
- Bit 7 enable bit clock

A read from the I/O port base address gives the contents of the control port. The I/O port base address plus one, provides an 8 bit latch for the most significant bits of the dual port base address:

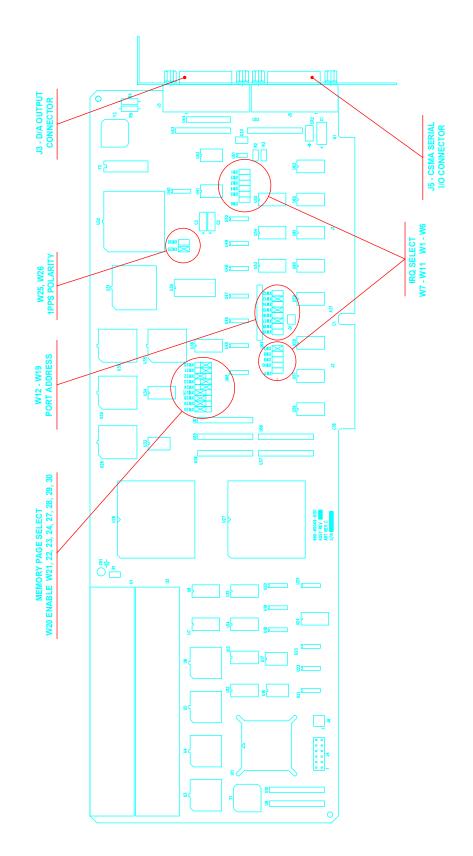
- Bit 0address 16 of memory base addressBit 1address 17 of memory base addressBit 2address 18 of memory base addressBit 3address 19 of memory base address
- Bit 4 address 20 of memory base address
- Bit 5 address 21 of memory base address
- Bit 6 address 22 of memory base address
- Bit 7 address 23 of memory base address

A read from the I/O port base address plus one yields the latched contents. The interrupt to the host is jumper selected for IRQ3-7, IRQ9-12 or IRQ14-15. The dual-port memory has an area reserved for handshaking and configuration data. Most of this memory is for data requested by the host. The application software for the DSP is loaded from this memory into the DSP working memory during initialization.

2.3.1 Controls and Indicators - Host Interface Module

The Host Interface Module utilizes on board jumpers to configure interrupt levels (IRQ) to the host computer, output port address, and 1 pulse per second (1PPS) input polarity. The jumpers and their use are described in the following paragraphs. Figure 2-3 illustrates the location of all controls, indicators and connectors of the Host Interface Module.

2.3.1.1 Interrupt Level Selection - Host Interface Module.


Host Interface Module interrupt request levels are defined in Table 2-8.

Jumper	IRQ	Description
W1	IRQ2/9	Interrupt Request 9, redirected to IRQ2
W2	IRQ7	Interrupt Request 7, normally used for LPT
W3	IRQ6	Interrupt Request 6, normally used for floppy disk
W4	IRQ5	Interrupt Request 5, normal IRQ for floppy disk
W5	IRQ4	Interrupt Request 4, normal IRQ for COM port
W6	IRQ3	Interrupt Request 3, normal IRQ for COM port
W7	IRQ10	Interrupt Request 10, Unassigned
W8	IRQ11	Interrupt Request 11, Unassigned
W9	IRQ12	Interrupt Request 12, Unassigned
W10	RQ15	Interrupt Request 15, Unassigned
W11	RQ14	Interrupt Request 14, normal IRQ for hard disk

Table 2-8. Host Interface Module interrupt select jumpers.

2.3.1.2 Output Port Address Selection - Host Interface Module.

Eight jumpers are provided to allow the ICP Port Address to be selected from 0 hex to 3FF hex, in steps of 4. Each jumper has a binary weight as indicated in Table 2-9. The Host Interface Module uses the jumper configured port address and this address plus 1.

W12	W13	W14	W15	W16	W17	W18	W19	I/O Port Base Address
						open	open	0 hex
						open	jumper	4 hex
						jumper	open	8 hex
open	open	open	open	open	open			000 hex
open	open	open	open	open	jump			010 hex
open	open	open	open	jump	open			020 hex
open	open	open	jump	open	open			040 hex
open	open	jump	open	open	open			080 hex
open	jump	open	open	open	open			100 hex
jump	open	open	open	open	open			200 hex

Table 2-9. Host Interface Module output port address selection.

The weights of all installed jumpers are added to determine the ICP Port Address.

Example: Jumpers installed at W12, W16, W17 and W19 = port address 234 hex. Module thus uses port addresses 234 hex and 235 hex.

2.3.1.3 One PPS Input Polarity Select - Host Interface Module.

The normal one second pulse input is negative going on the second. W25 is jumpered, at factory, for a negative going input. If a positive input is used the jumper on W25 should be removed and replaced on W26.

CAUTION

Installing jumpers on both W25 and W26 can cause hardware damage and/or cause erratic ICP operation.

2.3.1.4 Dual Port Memory Base Address

The Dual Port memory base address can be set by software through the I/O port as described in section 2.3 or by hardware jumpers on the board. However, the hardware jumper method is normally used as it is the most compatible method with the widest range of PC computer hardware.

Jumper W20 is used to enable or disable the I/O port software register. When installed on pins 2 to 3, the I/O port software register is enabled and software can select the Dual Port memory base address. When in this mode no jumpers should be installed on jumpers W21 – 24 and W27 – 30. When jumper W2 is installed on pins 1 to 2, the I/O port software register is disabled and jumpers W21 – 24 and W27 – 30 are used to select the Dual Port memory base address. This is the normal mode of operation.

Jumpers W21 – 24 and W27 – 30 are used to compare with the upper 8 bits of the address to select the 64K byte memory page to use. Table 2-10 shows how jumpers W21 – 24 and W27 – 30 are used to select the Dual Port memory base address. When a jumper is installed between pins 1 to 2, a logic high (1) signal is selected. When a jumper is installed between pins 2 to 3, a logic low (0) signal is selected. Each must have a jumper installed in one or the other positions for proper operation. Note that the 0D0000h base page address is standard for the ICP system and should not be change except under the direction by Geotech engineers.

Address	W30	W29	W28	W27	W24	W23	W22	W21
	(A23)	(A22)	(A21)	(A20)	(A19)	(A18)	(A17)	(A16)
0B0000h	2-3	2-3	2-3	2-3	1-2	2-3	1-2	1-2
0C0000h	2-3	2-3	2-3	2-3	1-2	1-2	2-3	2-3
0D0000h	2-3	2-3	2-3	2-3	1-2	1-2	2-3	1-2
0E0000h	2-3	2-3	2-3	2-3	1-2	1-2	1-2	2-3
0F0000h	2-3	2-3	2-3	2-3	1-2	1-2	1-2	1-2

Table 2-10. Dual Port Memory Base Address Jumpers

2.3.2 Connectors - Host Interface Module

Host Interface Module is configured with four connectors. J1 and J2 are IBM PC bus compatible card edge connectors having pinout assignments compatible with the IBM standard AT pinout. Connector J3 provides outputs for the 32 channel digital to analog converter board and J5 provides the high speed CSMA I/O connection for up to 6 four port Multiplexer Modules. Connector pinouts are described in the following paragraphs.

2.3.2.1 J3 - 32 Channel D/A Output Connections - Host Interface Module.

J3 is a 15 pin "D" female receptacle. The mating cable is Geotech P/N 990-60157-0101. The J3 pin out description is in Table 2-11.

J3 Pin	Function
Pin 1	D/AA0 - Address 0 to D/A 1 to 8 Demultiplexers
Pin 2	D/AA1 - Address 1 to D/A 1 to 8 Demultiplexers
Pin 3	D/AA2 - Address 2 to D/A 1 to 8 Demultiplexers
Pin 4	DMUXE0 - Enable to Demultiplexer 0
Pin 5	DMUXE1 - Enable to Demultiplexer 1
Pin 6	DMUXE0 - Enable to Demultiplexer 2
Pin 7	DMUXE0 - Enable to Demultiplexer 3
Pin 8	DMUXE0 - Enable to Demultiplexer 4 (not used)
Pin 9	CLKA - Clock to Serial Input 16 bit D/A (Normal Phase)
Pin 10	CLKB - Clock to Serial Input 16 bit D/A (Reverse Phase)
Pin 11	LEA - Latch Enable to Serial 16 bit D/A (Normal Phase)
Pin 12	LEB - Latch Enable to Serial 16 bit D/A (Reverse Phase)
Pin 13	DATA - Serial Data (Normal Phase)
Pin 14	DATB - Serial Data (Reverse Phase)
Pin 15	Common

Table 2-11. Host Interface Module digital to analog port connector (J3).

2.3.2.2 J5 - CSMA Protocol Connectors - Host Interface Module.

Connector J5 provides the connection between the Host Interface Module and the remote Multiplexer Modules. J5 connector pinout descriptions are shown in Table 2-12.

Connector	
Pin	Signal/Function
J5-1	DRDY6 - Multiplexer Module 6 (if configured) data ready
J5-2	DRDY7 - Multiplexer Module 7 (if configured) data ready
J5-3	SD + to/from ICP Multiplexer Module
J5-4	SD - to/from ICP Multiplexer Module
J5-5	DRDY0 - Multiplexer Module 0 data ready
J5-6	DRDY1 - Multiplexer Module 1 (if configured) data ready
J5-7	DRDY2 - Multiplexer Module 2 (if configured) data ready
J5-8	DRDY3 - Multiplexer Module 3 (if configured) data ready
J5-9	1PPS input from ICP communications controller
J5-10	DRDY4 - Multiplexer Module 4 (if configured) data ready
J5-11	DRDY5 - Multiplexer Module 5 (if configured) data ready
J5-12	TXT serial output to Time Receiver
J5-13	RXT serial input from Time Receiver
J5-14	Signal Common
J5-15	1 PPS input to communications controller

I able 2-12. Host Interface Module connector J5 pin assignments	Table 2-12.	Host Interface Module connector J5 pin assignments.
---	-------------	---

2.3.3 Specifications - Host Interface Module

HOST PERSONAL COMPUTER					
Slot Requirement	1 Full size AT slot (16 bit ISA bus)				
Host Memory requirement	16k byte memory window				
SERIAL INTERFACE					
Protocol Coding Scheme Speed Overhead	CSMA Manchester Encoding 400,000 clocks per second (1 bit transfer per clock) ICP data - 0.7% to 2%				
Overneau	Format and hand shake - 2.3% to 7%				
MECHANICAL CHARACTERISTICS					
Size	4.80 in. High x 13.85 in. Long x 0.75 in. Thick				
Weight	TBD				
ENVIRONMENTAL CHARACTERISTICS					
Operating Temperature Storage Temperature Relative Humidity	0 to + 50 deg C - 30 to + 85 deg C 10% to 85% non condensing				
POWER REQUIREMENTS					
Voltage Current	+5.0 Volts +/- 0.25 volts TBD				

3. INSTALLATION

3.1 GENERAL

Installation of the ICP System consists of:

- Configuration and installation of the Multiport Controller unit;
- Configuration and installation of the Host Interface Module;
- Installation of interconnecting cables;
- Installation and connection of optional timing system;
- Installation and configuration of operating software.

Each of these installation topics is discussed in detail in a paragraph to follow.

3.2 UNPACKING AND INSPECTION

Upon receipt of shipment, carefully inspect the shipping documentation to insure all crate or other containers are accounted for. Additionally, examine all shipping containers and their contents for damage. Immediately notify the shipping agent and Geotech Instruments, LLC of any damage noted.

A packing list showing specific package contents will be provided with each shipment. A typical shipment will include the following contents:

- ICP System including
 - Multiport Controller;
 - Host Interface Module, P/N 990-60049-0101;
 - Cable Assembly, Mux. to Mux./ICP, P/N 990-60156-0102;
 - Operation and Maintenance Manual, P/N 990-59660-9800;
 - Power Cable, Belden P/N 17250.
- •
- Optional Items, possibly including:
 - GPS-1 Interface Cable, P/N 990-59878-0106;
 - Cable Assembly, Mux. to GTS-ONE, P/N 990-60172-0101;
 - Cable Assembly, DA to ICP, P/N 990-60157-0101.

Compare package contents to the enclosed packing list to verify all items are accounted for. Notify Geotech Instruments, LLC of any missing or damaged items.

3.3 INSTALLATION PLANNING

Prior to placement or installation of any component of the ICP System, careful consideration should be given to the overall installation plan. In particular, attention should be given to such aspects as serviceability, environment, and simplicity of installation.

Typically, the installation environment requirement is driven by the host computer. The host computer should be installed in an area meeting minimum environmental requirements as specified by the manufacturer of the device. Other considerations include availability of equipment rack space for installation of the Multiport Controller enclosure, and cable length requirements between the various system components.

3.3.1 Host Computer Recommended Performance

The ICP Host Interface installs in a host computer having the following recommended minimum specifications:

Hardware Architecture/Speed	Pentium - 200
Operating System	MicroSoft Windows NT™ V4.0
	with service pack 4
Random Access Memory	64 Mbytes
Hard Disk	1 Gbyte
Available RAM Window	16 kBytes
CPU Slot requirement	Full size AT slot, 16 bit ISA bus

Host computer specifications not meeting the above recommendations may result in a corresponding reduction of system performance.

3.3.2 Equipment Location

Standard or special order cable lengths must be considered when selecting locations of the various equipment items. Standard cable lengths are indicated in the following table. Consult the factory if other cable lengths are desired. mating connectors for the Multiplexer data I/O and D/A port are provided, but it is the responsibility of the user to assemble the required cables.

Cable Assembly, Mux. to ICP, P/N 990-60156-0102 (Multiport Controller to Host Computer)	25 Feet (7.6 M)
Cable Assembly, DA to ICP, P/N 990-60157-0101 (Multiport Controller to Host Computer)	25 Feet (7.6 M)
GPS-1 Interface Cable, P/N 990-59878-0106 (Multiport Controller to Host Computer)	100 Feet (30.48 M)
Cable Assembly, Mux. to GTS- ONE (Multiport Controller to GTS-ONE)	10 Feet (3.05 M)

Table 3-1.	Standard ICP System Cab	le Lengths
------------	-------------------------	------------

3.4 INSTALLATION OF MULTIPORT CONTROLLER

As described in previous sections of this document, the Host Interface Module is designed for installation in an **IBM**TM standard personal computer (AT) running the **MicroSoft WindowsNT**TM operating environment. The Host Interface Module requires one 16 bit ISA bus slot. Prior to installation of the Host Interface Module in the host computer system, the user must determine the starting address of an available 16kByte memory block that can be dedicated to the ICP software task, as well as an available hardware interrupt level. It is also necessary to configure Host Interface Module for the selected memory address and interrupt level through the on board configuration jumpers.

3.4.1 Determination of Available Host Resources.

To determine available host computer resources, the PC should first be booted in the *MicroSoft WindowsNT*[™] environment. From the *MicroSoft WindowsNT*[™] program manager, select **FILE**, **RUN**, and enter *WINMSD.EXE*. From the *WINMSD* screen, select **IRQ/Port Status**. Under the screen area labeled **INTERRUPTS**, examine the list of interrupts currently in use, and select an unused interrupt level for use with the ICP System (typically IRQ 10 is available). Similarly, from the **PORT** area, examine the ports (port addresses) currently in use. Select an unused port address (typically 150h) for the ICP System. Make a note of the selections made for later system configuration.

Upon completion of the above steps select **OK** to return to the main **WINMSD** menu, then select the **DMA/MEMORY** button. As above, examine the tables to determine the start address (physical address) of an available 16 kByte (length = 4000h) contiguous memory block. Typically B0000H is available. As above, make note of

the selected start address for system configuration as described in the following paragraph. Exit the *WINMSD* program upon completion of these steps.

Consult the *MicroSoft WindowsNT*[™] documentation for additional information on the use of the *WINMSD* program.

3.4.2 <u>Registry of Selected System Parameters</u>

To be added

3.4.3 ICP Host Interface Module Configuration

Adjust the Host Interface Module configuration jumpers to reflect the I/O Port Address and IRQ levels as selected in preceding paragraphs. Refer to paragraph 2.2.5.1 of the manual for jumper configuration details.

3.4.4 Physical Installation of the Host Interface Module

The Host Interface Module requires a full length AT card slot (16 bit ISA bus) of the host computer. Refer to the computer system vendor's manual for installation instructions for system expansion and/or third party devices.

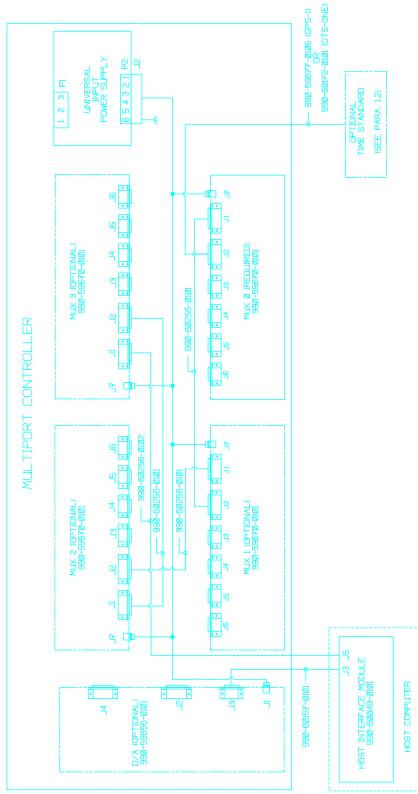
3.5 INSTALLATION OF MULTIPORT CONTROLLER

The Multiport Controller, described in previous section of this document, provides the necessary hardware interface between the Host Interface Module and external communications equipment, analog waveform recording devices and external timing system hardware.

The Multiport Controller enclosure is designed for installation in a 19" E.I.A. standard equipment rack. The enclosure front panel requires a vertical panel space of 4 rack units (7 inches) and 9.5 inches (24 cm) of rack depth, not including cable entry. The device should be mounted in a user supplied equipment rack using rack mount screws supplied by rhe rack vendor.

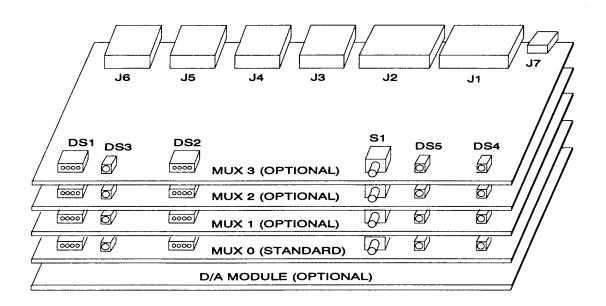
3.6 ICP SYSTEM CABLING

ICP System cabling involves the interconnection of Multiplexer modules within the Multiport Controller (typically accomplished prior to shipment from the factory), interconnection of Multiplexer Modules with the Host Interface Module, interconnection of the Host Interface Module D/A output to the D/A Module in the Multiport Controller, interconnection of the D/A Module outputs to the analog recording devices, and interconnection of external serial data streams to the Multiplexer Module and serial ports.


Typical ICP System interconnections are shown in Figure 3-1 of this document. Figure 3-2 indicates the Multiplexer and D/A Module positions within the Multiport Controller. Table 3-2 tabularizes required and optional interconnections. Specific connector/function pinouts are described in Chapter 2 of this document.

CAUTION

INSTALLATION OF CABLING BETWEEN ICP SYSTEM DEVICES AND BETWEEN ICP SYSTEM AND EXTERNAL DEVICES REQUIRE THE MULTIPORT CONTROLLER COVER TO BE REMOVED. THIS EXPOSES THE INSTALLATION TECHNICIAN TO POSSIBLE DANGEROUS ELECTRICAL CIRCUITS. INSTALLATION TECHNICIANS ARE ADVISED TO TAKE PROPER PRECAUTIONS WHILE INSTALLING/SERVICING


3.7 HOST COMPUTER SOFTWARE INSTALLATION

To be added

Intelligent Communications Processing System O&M Manual

Figure 3-1 Typical ICP interconnection diagram.

	FROM		ТО		
MODULE CONNECTOR		MODULE	CONNECTOR	CABLE	
EXTERNAL RS-232 SERIAL		MUX 0	J3, J4, J5, J6	USER SUPPLIED AS	
DATA SOURCES 1-4		(CONTROLLER #1)		REQUIRED (NOTE 2)	
EXTERNAL RS-23	32 SERIAL	MUX 1	J3, J4, J5, J6	USER SUPPLIED AS	
DATA SOURC	ES 5-8	(CONTROLLER #1)		REQUIRED (NOTE 2)	
EXTERNAL RS-23	32 SERIAL	MUX 2	J3, J4, J5, J6	USER SUPPLIED AS	
DATA SOURCE	ES 9-12	(CONTROLLER #1)		REQUIRED (NOTE 2)	
EXTERNAL RS-23	32 SERIAL	MUX 3	J3, J4, J5, J6	USER SUPPLIED AS	
DATA SOURCE		(CONTROLLER #1)		REQUIRED (NOTE 2)	
EXTERNAL RS-23	32 SERIAL	MUX 0	J3, J4, J5, J6	USER SUPPLIED AS	
DATA SOURCE	S 17-20	(CONTROLLER #2)		REQUIRED (NOTE 2)	
EXTERNAL RS-23	32 SERIAL	MUX 1	J3, J4, J5, J6	USER SUPPLIED AS	
DATA SOURCE	S 21-24	(CONTROLLER #2)		REQUIRED (NOTE 2)	
EXTERNAL TIME S	STANDARD	MUX 0	J2	990-59877-0106	
(GPS-1)		(CONTROLLER #1)		(NOTE 3)	
EXTERNAL TIME S		OR MUX 0	J2	990-60172-0101	
(GTS-ON	E)	(CONTROLLER #1)		(NOTE 3)	
MUX 0 (CONTROLLER #1)	J1	MUX 1 (CONTROLLER #1)	J2	990-60156-0101	
MUX 1 (CONTROLLER #1)	J1	MUX 2 (CONTROLLER #1)	J2	990-60156-0101	
MUX 2 (CONTROLLER #1)	J1	MUX 3 (CONTROLLER #1)	J2	990-60156-0101	
MUX 3 (CONTROLLER #1)	J1	MUX 0 (CONTROLLER #2)	J2	990-60156-0102	
MUX 0 (CONTROLLER #2)	J1	MUX 1 (CONTROLLER #2)	J2	990-60156-0101	
MUX 1 (CONTROLLER #2)	J1	HOST INTERFACE MODULE	J5	990-60156-0102 (NOTE 4)	
HOST INTERFACE MODULE	J3	D/A MODULE	J3	990-60157-0101	
D/A MODULE J2 EXTERNAL RECORDER		ANALOG RECORDER		USER SUPPLIED AS REQUIRED (NOTE 1)	
D/A MODULE	J4	EXTERNAL ANALOG RECORDER		USER SUPPLIED AS REQUIRED (NOTE 1)	

Table 3-2 ICP System cabling

W34 JUMPERS AS REQUIRED FOR TIMING SYSTEM USED.4. CONNECTION TO HOST INTERFACE MODULE MUST BE FROM J1 OF LAST CONFIGURED MULTIPLEXER MODULE.

3. OPTIONAL TIME STANDARD MUST BE CONNECTED TO J2 OF MUX 0. CONFIGURE MUX 0 W33,

4. OPERATION

4.1 GENERAL

This section of the Intelligent Communications Processor System Installation and Operation Manual describes the procedures for controlling the functionality and configuration of the system. In this section, the various host computer display screens will be pictured with necessary supporting text to describe the purpose of the particular screen display and define the parameters associated with the particular screen. The ICP system is designed to operate in the **MicroSoft WindowsNT**TM environment. It is thus necessary that the user become familiar with this operating system prior to attempting to install, configure or use ICP.

4.2 ICP SOFTWARE OPERATION

With the host computer booted in the **MicroSoft WindowsNT** [™] environment, the **NT** Desktop screen will display several ICP related icons in addition to many of the standard ones, similar to that shown in Figure 4-1. The ICP specific programs, *Icpacq, Icprtd, Locate, Cmdicp*, and *Drsetup* can also be executed by selecting the **START** button on **NT**'s Task Bar. This selection displays the ICP Utilities option which provides access to the five ICP specific programs.

To configure the ICP system, select the *Cmdicp* icon. This selection displays the ICP configuration window, as show in Figure 4-2. Initially, all system parameters must be defined. Subsequent changes to the system's configuration or the initial setup can be accessed through the **Configure** selection on the **Cmdicp** tool bar. Section 4.2.1 explains each parameter in detail and defines the acceptable values for each field.

Select the *Icpacq* icon to initialize the ICP hardware and begin acquisition. This selection uses the information provided in the configuration file for task management and system control. After selecting this option, the ICP may display several messages in the pop-up window. Initially, the last message displayed in the window is GPS time. Before the ICP system will start, GPS time must be valid. This window also displays event detection information if the system is configured for that mode and a trigger condition exists. Other miscellaneous error condition message can also be viewed in the window.

The real time display program which is used to display stored data or real time channel information can be activated by selecting the *lcprtd* icon. After selecting this option, the initial window shown in Figure 4-17 is displayed. Many of the available options that are used to manipulate the collected data is described in Section 4.5.

ICP System Installation and Operation Manual

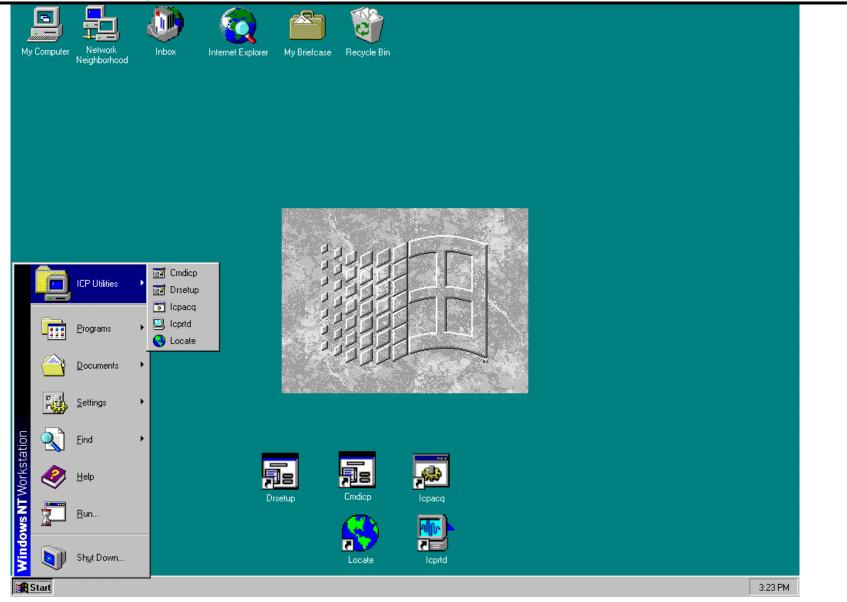


Figure 4-1. ICP Startup Screen

To initiate the ICP location program, select the *Locate* icon. This program can also be launched within the **Cmdicp** setup screen. Using this program to locate an event can only be accomplished if proper configuration settings are met. Refer to section 4.2.3 for configuration information.

The *Drsetup* icon conveniently activates the DR-24 configuration program. This routine is used to remotely configure the DR-24 acquisition system. Appendix E contains figures detailing each setup screen and additional information related to the setup of a DR-24 acquisition system.

The initial ICP screen is shown in figure 4-2. As indicated by this figure, the ICP software window title, menu, tool and status bars have the same look and functionality as other *MicroSoft Windows* [™] or *WindowsNT* [™] applications. Only the menu bar **Configure** and **Record** functions will be treated in detail in this document. While using ICP software, the status bar displays messages that are helpful to the user in the selection of various options. Menu item scroll bars and arrows are provided with many of the menu entries to show current configurations and/or acceptable menu item parameters.

Several system menus contain **Current Value** and **Entry Select** windows. With the selection of valid **Port**, **Mux Port**, or **Station Name Component**, as described in subsequent paragraphs, the **Current Value** field will reflect the existing configuration of the associated parameters listed in the **Entry Select** portion of the window. To add or modify an **Entry Select** field content, place the mouse cursor within the desired entry field then type an acceptable parameter value. Alternatively, point and click (left mouse button) on the pull down button (down arrow) associated with the desired **Entry Select** item. The resulting pull down will list all acceptable Input parameters.

-			cmdicp			▼ ▲
<u>F</u> ile	⊻iew	<u>H</u> elp	<u>C</u> onfigure	<u>R</u> ecord	<u>L</u> ocate	
	2	光 喧	E 4 ?			
l				-		
Ready						

Scroll to the desired value and left mouse click on the value. With each **Entry Select** entry or modification, the system will prompt for confirmation or cancellation of the entry or change. An operator response is required before continuing.

Most menus will contain an **OK** button which must be selected to return to the previous menu and activate any configuration additions or modifications.

4.2.1 ICP Configuration

ICP configuration is initially selected and/or modified through the ICP menu bar **<u>Configure</u>** button. Selection of this button pulls down an additional menu window as shown in figure 4-3. Each of the **Station Parameters** options are discussed in the following paragraphs.

<u>S</u> tation Parameters
<u>A</u> nalog I/O
Event Detector Parameters

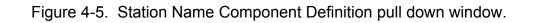
Figure 4-3. ICP <u>C</u>onfigure pull down menu.

4.2.1.1 ICP Configuration - Station Parameters

Selection of the <u>Station Parameters</u> button of the <u>Configure</u> pull down menu pulls down an additional menu as shown in figure 4-4. Through this menu, the user defines station particular information about remote data sites, ICP Multiplexer configuration and Multiplexer port specific information and configuration. Each item of the **Station Parameters** pull down men is discussed in the following paragraphs.

4.2.1.1.1 Station Parameters - Names

Selection of the **Names** button of the **Station Parameters** pull down displays an additional window (**Station Name Component Description**) as shown in figure 4-5. ICP will accommodate up to 60 seismic data channels at 100 samples per second per channel. These data channels can be input in any combination of one to three channels per incoming serial data link (Multiplexer port) for a maximum of twenty four ports. Through this menu, users must provide a unique name for each seismic data channel to be configured. **Station Name Component Descriptions** are limited to six characters and typically include characters to define a unique remote station as well as sensor and/or bandpass characteristics. Typical name styles may be such as ABCSPV or ABCBBN, where the station name is ABC and SPV represents


a short period vertical component and BBN represents a broadband North-South component.

The **Current List** pull down lists all currently configured **Station Name Component Descriptions**. The **Entry** field allows adding or delete specific station/component names via the **Add** and **Delete** buttons. Upon completion of configured **Station Name Component Descriptions** modifications, the **OK** button must be selected to return to the **Station Parameters** pull down menu.

Station Parameters	-
(Names)	
Communication	
Port/Chan	
Remotes	
ОК	

Figure 4-4. ICP Station Parameters menu.

me Compon	ent Definition
Entry	Add
	Delete
	OK

4.2.1.1.2 Station Parameters - Communications

ICP Multiplexer ports are configured through the **Communication** pull down screen from **the Station Parameters** menu. This screen is illustrated in Figure 4-6 and each entry is described in Table 4-1.

Upon completion of **ICP Multiplexer Port Definition** configuration, modification or review, select **OK** to return to the **Station Parameters** screen.

😑 ICP Multiplexer Port Definition			
Port 0 生			
Entry Select	Current Value		
Telemetry	simplex		
Baud Rate 19200			
Channels Active	1		
Delay [x5 ms]			
OK			

Figure 4-6. ICP Multiplexer Port Definition screen.

4.2.1.1.3 Station Parameters - Port/Chan

Each ICP port data stream can accommodate from 1 to 3 seismic data channels as defined in paragraph 4.2.1.1.1. Each of these channels must be configured as to the type and characteristics of digital data filters that are to be applied prior to data file display or archive. This is accomplished through the **Port/Chan**. button selection from the **Station Parameters** pull down. The resulting **ICP Port-Channel Definition** screen is shown in Figure 4-7. Specific filter characteristics are presented in Appendix C of this document. Screen data fields are described in the following:

Station Name Component	This parameter must match one of the Station	
	Name Component entries configured under	
	Station Parameters - Name of paragraph	
	4.2.1.1.1. A blank or no entry associated with a	

Field or Entry Select	Description of Entry
Port	An ICP Port is defined as one of four RS-232 I/O ports of each Multiplexer Module. An ICP system is capable of supporting up to 5 Multiplexer Modules, thus a total of 20 ports are possible. Each configured port is assigned a unique number from 0 to 19, sequentially, starting with Multiplexer Module 0 (MUX0) port A.
Telemetry	Acceptable values for the Telemetry parameter are limited to simplex , if only one way communication (data receive) is utilized, or duplex if the network utilizes two way communication.
Baud Rate	The Baud Rate parameter specifies the configured baud rate for the serial data I/O port. Acceptable Baud Rate values expressed as bits per second are: 1,200 9,600 2,400 19,200 4,800 38,400
Channels Active	Specifies the number of channels in the selected port to be recognized by the system. Acceptable values are: 0, 1, 3. To turn off all channels, select 0. To make 1 or 3 channel(s) active select 1 or 3 respectively.
Delay (x5 ms)	This parameter allows for compensation for known transmission delays. The use of this parameter is non essential for systems whose data are time tagged at the remote sensor site. If, however, data is time tagged at the receiving location, the delay can become significant and require compensation for accurately time tagged data. Acceptable parameters are integer values from 1 to 200, with the selected value representing a multiple of 5 milliseconds.

Table 4-1. ICP Multiplexer Port Definition menu entries.

Entry Select Port/Channel HPass Filter [hz] LPass Filter [hz]		Current Value 0/0 0.01 20.0	Station Name Component
OK			

Figure 4-7. ICP Port-Channel Definition screen.

Current Value field indicates the selected **Station Name Component** has not been previously configured.

Entry Select

Port/Channel	This parameter bridges the association of a Station Name Component with a communications Port . Port/Channel entries are in the form A/B, where A is a valid Multiplexer port in the range 0 through 23 (see paragraph 4.2.1.1.2), and B is a valid seismic data channel associated with that serial data stream. Acceptable B values are 0 through 2, representing 1 to 3 data channels.
HP Filter (Hz)	This parameter specifies the digital high pass (low cut) filter (or none) to be applied to the selected Port/Channel data. Acceptable channel high pass filter corner frequencies (in Hz) are

1	NONE
0.01	0.10
0.03	0.33
0.05	0.50

LP Filter (Hz) This parameter specifies the digital low pass (high cut) filter (or none) to be applied to the selected **Port/Channel** data. Acceptable channel low pass filter corner frequencies (in Hz.) are

NONE		
2.00	12.00	
4.00	16.00	
6.00	18.00	
8.00	20.00	

Upon completion of **ICP Port-Channel Definition** configuration, modification or review, select **OK** to return to the **Station Parameters** screen.

4.2.1.1.4 Station Parameters - Remotes

Selection of the <u>Remotes</u> button from the Station Parameters screen brings up a Remote Station Definition window through which the user may specify certain mandatory and other optional parameters related to each remote sensor site. Figure 4-8 illustrates this screen. These parameters are described in the following:

Mux Port This parameter relates the data in the Current Value and Entry Select fields to a specific Multiplexer port. This field must contain a valid channel prior to the display or modification of data. A mouse click on the scroll button adjacent to this field causes a pull down window display of currently configured ports. Acceptable values are 0 through 23.

Entry Select

Data Format This parameter specifies the bit resolution of the digitizing scheme for the connected remote data site. Acceptable values are 12, 16, or 24 bit.

- **Time Base** This parameter specifies the source of the data time tag. Acceptable values are **Remote**, indicating incoming data frames have been time tagged at the remote digitizer site, or **Central** if the data frames are to be time tagged and time aligned by the ICP system.
- Sample Rate This parameter specifies the data sample rate of the remote digitizer connected to the specified Multiplexer port. Acceptable values are 50, 100 or 200 samples per second per data channel. (Note: Currently, 200 sps mode is not supported.)

Select the **OK** button to return to the **Station Parameters** menu.

Remote Station D	efinition
Time Base	Value Mux Port bit 0 重 00
	ОК

Figure 4-8. Remote Station Definition screen.

4.2.1.2 ICP Configuration - Analog I/O

Selection of the <u>Analog I/O</u> button from the ICP main screen pulls down a menu screen as shown in Figure 4-9. This menu allows the operator to configure each of up to 32 analog output ports if the ICP system includes an optional D/A Module. Menu appearance and functionality is identical to that described in paragraph 4.2.1.1 for the **Station Parameters** menu. Specific menu entries and data fields are defined in the following paragraphs.

😑 🛛 ICP Analog Outp	ut Channels D	efinition 🗾 🔺
Entry Select	Current Value	Station Name Component
Analog Channel 📃 主	0	s1v 👤
Data Stream 📃 보	detector	
Gain (db)	OdB	
Enable Output	yes	ОК

Figure 4-9. ICP Analog Output Channels Definition screen.

Station Name Component	specific re 4.2.1.1.1. Name Co Station P specifies selected a selected selected sele	emote stat and must omponent Parameters the channe Analog Cl ed with a C	Component field defines a ion as defined in paragraph match one of the Station entries configured under s - Name . This parameter el data to be output on the nannel . A blank or no entry urrent Value field indicates the ame Component has not been ed.
Entry Select			
Analog Channel	-	utput ports	ines one of 32 unique D/A s. Acceptable values are 0
Data Stream	of filtering	, if any, is lame Cor r	arameter specifies what type to be applied to the selected ponent data. Acceptable
		None Raw	No data is output; Channel raw or unfiltered data is output;
		Filtered	Data filters defined in the ICP Port Definition menu are applied;
		Detector	Data filters defined in the ICP STA/LTA Detector Definition

or **ICP Level Detector Definition** menus (paragraph 4.2.1.3.1 and 4.2.1.3.2) are applied;

Gain (dB)The Gain parameter specifies the channel gain
(attenuation) relative to the raw ICP data.
Acceptable parameters are 0, -24, -48, and -72
dB. D/A output is a 16 bit word with each
attenuation step being applied as a 4 bit shift of an
ICP 32 bit data word. 0 dB thus outputs the least
significant 16 bits plus sign, and -72 dB outputs
the 16 most significant bits plus sign.Enable OutputThis parameter enables (value = Yes) or disables

Enable OutputThis parameter enables (value = Yes) or disables
(value = No) the specified D/A output.

Select **OK** upon completion of D/A channel configuration to return to the **Station Parameters** menu.

4.2.1.3 ICP Configuration - Event Detector Parameters

Selection of the <u>Event Detector Parameters</u> button from the ICP main screen pulls down a menu screen as shown in Figure 4-10. This menu allows the operator to define an **STA/LTA** (Short Term Average/Long Term Average ratio) and/or **Level** type event detector. Selection of the detector type causes another menu screen display, for parameter configuration of the detector type selected. Figures 4-11 and 4-12 illustrate the configuration screen menus.

ICP System allows a combined total of 60 event detectors to be defined. ICP further allows the user to specify which detector (or none) and what detector parameters are to be applied to each seismic data channel component individually.

1	Event Detector Parameters 🛛 💌 🔺
	STA/LTA
	Level

Figure 4-10. Event Detector Parameters

- ICP_STA/LT/	A Detector Defi	nition 🔽 🔺
Entry Select	Current Value	Station Name Component
Filter Low-Pass (hz)	2.0	s1v 👤
High-Pass (hz)	0.1	
Time Constant		
LTA (secs)	150.0	
STA (secs)	2.0	
Ratio		
Trigger	5.0	
Untrigger	1.5	
Enable Detector	yes	
Updating LTA	no	OK

Figure 4-11. ICP STA/LTA Detector Definition screen

- ICP Level	Detector Definit	ion 🔽 🔺
Entry Select	Current Value	Station Name Component
Filter	2.0	stv 👤
High-Pass (hz)	0.1	
Trigger Level		
% Full Scale	5.0	
Enable Detector	no	OK

Figure 4-12. ICP Level Detector Definition menu.

4.2.1.3.1 STA/LTA Event Detector Definition

The **ICP STA/LTA Detector Definition** menu is shown in Figure 4-11. Menu items are described in the following summary.

Station Name Component	The Station Name Component field defines a specific remote station as defined in paragraph 4.2.1.1.1. and must match one of the Station Name Component entries configured under Station Parameters - Name. This parameter specifies the channel data to be affected by the corresponding Current Value and Entry Select fields.
Entry Select	
Filter	These table entries determine the digital filter characteristics applied to the selected Station Name Component data channel prior to event detection.
Low-Pass (Hz)	This parameter specifies the low pass filter characteristics. Acceptable low pass filter frequencies (in Hz) are

		1.00 2.00	5.00 10.00	20.00 40.00
High-Pass (Hz)	character		es the high pa table high pas e	
		0.10 0.20	0.50 1.00	2.00 4.00
Time Constant	seconds long term determine	over which a average sigr ed for the pur	cify a window short term ave al amplitude cose of decla Component	erage and/or is to be ring an event
LTA (secs)	required t determine responsiv LTA can less than	for the long te ed. The short ve the system be any intege or equal to 2	es the length rm average (l er the windov is to changes r value greate 55 seconds he ater than the	LTA) to be v, the more s LTA. The er than 0 and owever the
STA (secs.)	required t determine responsiv STA can less than	for the short to ed. The short ve the system be any intege or equal to 2	es the length erm average (er the windov is to changes or value greate 55 seconds, h s than the LT.	(STA) to be v, the more s STA. The er than 0 and nowever the
Ratio	the trigge	r point for the		nd determines of an event on er scrutiny.
Trigger	STA/LTA any value 255. The	ratio causes greater than	0 and less th	t which the Jer and can be an or equal to the greater the
Untrigger			ines the point an untrigger o	

can be any value greater than 0 and less than or equal to 255. The **Untrigger** ratio must be less than the trigger ratio.

Enable DetectorValue = Yes implies the detector algorithm is
applied to the specified data stream; Value = No
implies the detector is disabled.Updating LTAThis parameter allows the user to specify the LTA
window remain active through a declared event, or

to disable the LTA window during the **Trigger/Untrigger** time frame. Value = Yes allows LTA averaging to continue. Value = No terminates LTA update until after **Untrigger**.

Select **OK** to return to the previous menu.

4.2.1.3.2 ICP Level Detector Definition

The ICP Level Detector Definition menu is shown in Figure 4-12. Menu items are described in the following summary.

Station Name Component	The Station Name Component field defines a specific remote station as defined in paragrap 4.2.1.1.1. and must match one of the Station Name Component entries configured under Station Parameters - Name. This parameter specifies the channel data to be affected by the corresponding Current Value and Entry Sele fields.	
Entry Select		
Filter	These table entries determine the digital filter characteristics applied to the selected Station Name Component data channel prior to event detection.	

Low-Pass (Hz)	This parameter specifies the low pass filter characteristics. Acceptable low pass filter frequencies (in Hz.) are					
		1.00 2.00	5.00 10.00	20.00 40.00		
High-Pass (Hz)	character	meter specifie istics. Accept es (in Hz.) are	table high pas			
		0.10 0.20	0.50 1.00	2.00 4.00		
Trigger Level	This parameter defines the rms. signal level required to declare an event on the channel under test.					
% Full Scale	The rms. trigger level is specified as an integer value between 5 and 100 (in increments of 5). The number represents the % of full scale required to declare an event.					
Enable Detector	to declare an event. This parameter specifies whether the defined detector is active or inactive on the selected channel. Value = Yes, detector active. Value = No, detector disabled.					

Select **OK** to return to the previous menu.

4.2.2 <u>Record</u>

ICP record functions are initiated and controlled via selection of the **<u>Record</u>** button of the ICP main menu. Selection of this button pulls down the menu of Figure 4-13 which allows the selection of <u>**Event**</u> or <u>**Continuous**</u> record modes. ICP System is capable of recording (archiving) data in either mode, or both modes simultaneously. Selection of the desired mode button from the main menu accesses an additional configuration menu for the selected mode. Mode configuration is described in the following paragraphs.

<u>Event</u>
<u>C</u> ontinuous

Figure 4-13. ICP **<u>Record</u>** control pull down.

4.2.2.1 ICP Event Record Control

Selection of The **Event** option from the ICP **Record** control pull down displays the **Event Record Control** menu. Through this menu, the operator establishes the parameters necessary to write event record files upon event trigger based on trigger parameters defined in previous paragraphs. The Event Record Control menu is shown in Figure 4-14. Parametric descriptions are contained in the discourse following.

😑 Event Record Control 🔽	•
Station Name Component Record Options Entry Select Current Value Station Name Component Image: Station Name Component Raw s1v	
General Record Options Entry Select Pre-event (secs) Post-event (secs) Max_event (mins) Trigger Window (secs) Record Format Triggers Required	
ОК	

Figure 4-14. ICP Event Record Control menu.

Station Name Component	The Station Name Component field defines a specific remote station as defined in paragraph 4.2.1.1.1. and must match one of the Station Name Component entries configured under Station Parameters - Name. This parameter specifies the channel data to be affected by the corresponding Current Value and Entry Select fields.			
Entry Select	NoneNo data is recorded;RawChannel raw or unfiltered data is recorded;FilteredData filters defined in the ICP PortPortDefinition menu are appliedBothRaw and filtered data are recorded			
Pre-event (secs)	This parameter allows the inclusion of a specified amount of pre event waveform data to be included an event record file. Pre event data is defined as a fixed length (in seconds) of data immediately preceding an event trigger declaration. Pre event data is specified in integer seconds in the range 1 to 10 in 1 second increments, 15 to 50 in 5 second increments or 60 to 90 in 10 second increments.	a		
Post-event (secs)	This parameter allows the inclusion of specified po event waveform data to be included in an event record file. Post event data is defined as a fixed length (in seconds) of data immediately following a event period. The post event data period begins a the untrigger or detrigger point for all declared even Post event data is specified in integer seconds in th range 1 to 10 in 1 second increments, 15 to 50 in 5 second increments or 60 to 90 in 10 second increments.	n t nts. he		
Max_event (mins)	Max_event length is a parameter that will limit the maximum length of a record file. The max event the frame begins at event trigger declaration and exter for the duration of Max_event, thus the longest file length (in time) will be Max_event plus Pre-event. Max_event is specified in integer minutes in the range 1 to 10 in 1 minute increments, and 20 to 60 minutes in 10 minute increments.	nds		
Trigger Window (secs)	Trigger Window specifies a time window for association of multiple station event triggers as a			

	single event. This parameter is determined by the seismic network geometry and allows for the wave path travel time across the network. Trigger Window is specified as integer seconds in the range 0 to 5 in 1 second increments, 10 to 60 in 10 second increments, 120 to 300 in 60 second increments, and 600 or 1200 seconds.
Record Format	ICP system users can specify event data record files to be written as <i>PC-SUDS</i> or <i>SEISAN</i> formatted files (multiplexed data file - one file for <u>all</u> defined Station Name Components) or <i>DADiSP</i> TM formatted files (one file for <u>each</u> defined Station Name Component) (see paragraph 4.3 for additional information).
Triggers Required	ICP System allows users to establish a voting scenario requiring multiple seismic data channel (Station Name Component) triggers be declared before declaring a seismic event and creating an event data file. Acceptable values are integers from 1 to the maximum number of defined Station Name Components , not to exceed 60.

Select **OK** upon completion of **Event Record Control** setup to return to the previous menu and begin event record recording.

4.2.2.2 ICP Continuous Record Control

Selection of <u>Continuous</u> from the <u>Record</u> pull down displays the <u>Continuous</u> **Record Control** menu shown in Figure 4-15. This menu provides the means to define parameters associated with the continuous data record function. Continuous Record Control parameters are described in the following list.

Station Name Component	The Station Name Component field defines a specific remote station as defined in paragraph 4.2.1.1.1. and must match one of the Station Na Component entries configured under Station Parameters - Name. This parameter specifies t channel data to be affected by the corresponding Current Value and Entry Select fields.				
Entry Select	None Raw	No data is recorded; Channel raw or unfiltered data is recorded;			

	FilteredData filters defined in the ICPPortDefinition menu are appliedBothRaw and filtered data is recorded
File Size (mins)	Acceptable file size parameters are 15, 30 and 60 minutes. This parameter limits the maximum length of each file written (one file for <u>all</u> defined Station Name Components in <i>PC-SUDS</i> , or <i>SEISAN</i> format or one file for <u>each</u> defined Station Name Component in <i>DADiSP</i> TM format).
Record Format	ICP system users can specify event data record files to be written as either <i>PC-SUDS</i> , or <i>SEISAN</i> formatted files (multiplexed data file - one file for <u>all</u> defined Station Name Components) or <i>DADiSP</i> TM formatted files (one file for <u>each</u> defined Station Name Component) (see paragraph 4.3 for additional information).
Spool Size (Mb)	Spool Size limits the maximum amount of disk space utilized to archive event or continuous data files. In continuous recording mode, the oldest data files are over-written by new files whenever Spool Size is exceeded by an attempt to write a new data file. Event records on the other hand are never over- written thus when event recording is enabled, only continuous data files, if existent can be overwritten. Data recording will thus cease if Spool Size is exceeded and only event files exist. Spool Size is specified in 100 Mbyte blocks from 100 to 1,000.

Selecting **OK** upon completion of **Continuous Record Control** configuration will return to the previous menu and begin continuous data recording.

_	Continuous Re	cord Control	▼ ▲
_ Statio	on Name Component Record Option	\$	
l r	Entry Select	Value Station Name C	omponent
	Filter	ed s1v	<u>*</u>
☐ Gene	eral Record Options		
ΙΓ	Entry Select	Current Val	
	File Size (mins)		_
	Record Format		_
	Spool Size (Mb)	1000	
		ОК	

Figure 4-15. Continuous Record Control screen.

4.2.3 Location

ICP location function is initiated and controlled via selection of the **Locate** button of the ICP main menu. Selection of this button displays the **Parameter** menu. Through this menu, the operator establishes the parameters necessary for determining the location of an event. The Real Time Location Control Parameters menu is shown in Figure 4-16. Parametric descriptions are contained in the following discourse.

Real Time Location Control Parameters	•
Station Name Component Response Table Associations	
Entry Select Current Value Station Name Component rtab1.dat s1v	
Location Control Minimum Number of Stations Required For Event Declaration	
Location Processing Enabled	
ок	

Figure 4-16 ICP Real Time Location Control Parameters menu

Station Name ComponentThe Station Name Component field defines a
specific remote station as defined in paragraph
4.2.1.1.1. and must match one of the Station Name
Component entries configured under Station
Parameters - Name. This parameter specifies the
channel data to be affected by the corresponding
Current Value and Entry Select fields.Entry SelectThis table entry determines the parametric data
required for determining the location of an event.
These entries are identified as rtab<u>x</u> where x is 1
through 10. While each table name uniquely defines
specific sensor/system characteristics it can be used
by more than one station. To generate these table
configuration files refer to Appendix D.

Minimum Number of Stations Required for Event Detection	This field defines the minimum number of stations required before the system declares an event. A valid station is one that triggered because it satisfied the detector conditions defined in the ICP Event Detector Parameters menu. A minimum of three and no more than 20 stations can be selected.
Location Processing Enabled	This parameter activates (value=Yes) or deactivates (value=No) the location processing function.

4.3 DATA FILE STRUCTURES

ICP System creates waveform data files, either continuous or event files, as described in the previous paragraphs. Archived data file names are descriptive such that the operator can determine from the name the file and data type as well as the data time. PC-SUDS data is recorded in 16 bit integer format (Geotech Instruments 16 bit Compact Remote Station) or 32 bit format (Geotech Instruments 24 bit DR-24 System). DADiSP and SEISAN data are recorded in 32 bit long format. File name descriptors are assigned as follows:

PC-SUDS Continuous Data

RAWhhmm.ddd or FILhhmm.ddd,

where

RAW= raw (unfiltered) data FIL= filtered data hh= hour (first sample of record) mm= minute (first sample of record) ddd= Julian date.

PC-SUDS Event Data

EVRnnnn.ddd or EVFnnn.ddd,

where

EVR= raw (unfiltered) event data EVF= filtered event data nnnn= event number (sequential daily number - 0001-9999) ddd= Julian date.

SISAN Continuous Data SNRhhmm.ddd or SNFhhmm.ddd,	
where	
SNR= raw (unfiltered) data SNF= filtered data hh= hour (first sample of record) mm= minute (first sample of record) ddd= Julian date.	
SEISAN Event Data ESRnnnn.ddd or ESFnnn.ddd,	
where	
ESR= raw (unfiltered) event data ESF= filtered event data nnnn= event number (sequential daily number - 0001-9999) ddd= Julian date.	
DADISP [™] Continuous Data DRnnhhmm.ddd or DFnnhhmm.ddd,	
where	
DR= raw (unfiltered) data DF= filtered data nn= Station Name Component number (0 - 71) hh= hour (first sample of record) mm= minute (first sample of record) ddd= Julian date.	
DADiSP [™] Event Data ERnnxxx.ddd or EFnnxxx.ddd,	
where	
ER= raw (unfiltered) event data EF= filtered event data	

nn= **Station Name Component** number (0 - 71) xxxx= event number (sequential daily number - 0001-9999) ddd= Julian date.

4.4 WAVEFORM DATA DISPLAY

ICP data files are archived, as described in previous paragraphs, as either **PC-SUDS**, **SEISAN** or **DADISP**TM formatted data files. Data display thus requires the user acquire a compatible software package.

For informational use only, *PC-SUDS* is a data format developed and supported by

International Association of Seismology and Physics of the Earth's Interior (IASPEI) P.O. Box "1", Menlo Park, CA 94026.

IASPEI software includes several volumes of acquisition, display, and analysis routines for the acquisition and processing of seismic data. Information and software are available through

Seismological Society of America 201 Plaza Professional Building El Cerrito, CA 94530 (Tel.: 510-525-5474).

SEISAN is a product of

Institute of Solid Earth Physics University of Bergen Allegaten 41, 5007 Bergen Norway

SEISAN offers software capabilities for determining event location and detailed analysis of seismic data.

DADiSP TM is a product of

DSP Development Corporation One Kendall Square Cambridge, Massachusetts 02139.

 $DADiSP^{TM}$ also includes software modules for the display and analysis of seismic and other waveform data.

4.5 ICP REAL TIME DISPLAY

The ICP real time display feature is a user friendly application program that allows the operator to view waveform data either from a file or in near real time. As described in previous paragraphs, PC-SUDS, DADISP, and SEISAN formatted data files are supported.

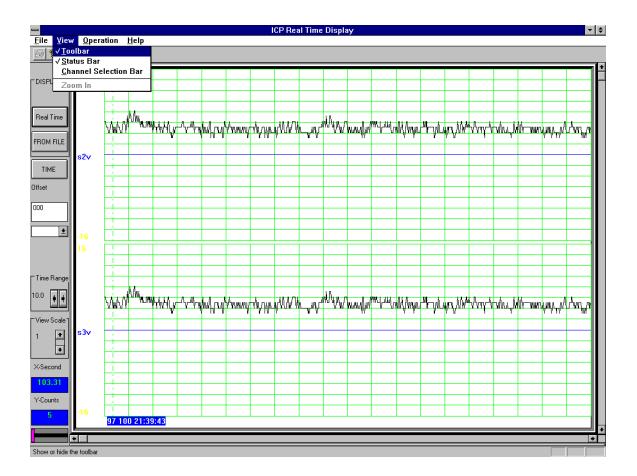
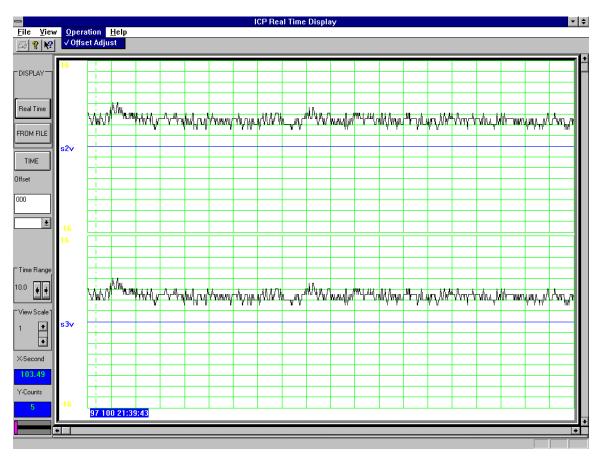
To initiate the program double click on the Real Time Display icon. The real time window, shown in Figure 4-17 will be displayed. As indicated by this figure, the ICP software tool bar and status have the same look and functionality as other *Microsoft Windows* or *WindowsNT* applications. Two windows should be present, the primary **Real Time Display** window and the secondary **Channel Selection** one.

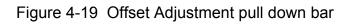
		ICP Real	Time Displa	y					•
	eration <u>H</u> elp								
<i>⊜</i> ? №									
DISTER					el Selection				
r		□ ■ΩFF ■Ω	F DFF	DFF	■ OFF	■ OFF	■ OFF	■ OFF	
Real Time			s3v F ∎DFF	s4∨ ∎0FF	s5v ∎0FF	s5n EDFF	s5e ∎0FF	S6V ∎0FF	
FROM FILE		<u>s6n s6e</u>	s7v	s7n	s7e	s8v	s8n		
		Time							
TIME									
Offset									
0									
±.									
······									
Time Range									
10.0									
 TView Scale]									
1 🛨									
•									
X-Second									
74.41									
Y-Counts									
5	97 100 20:29:09								
									+
For Help, press F1									

4.5.1 Channel Selection

As previous mentioned, starting the main program pops up this window. This window can also be initialized by clicking on the tool bar entry labeled <u>View</u> as shown in Figure 4-18. Selection of this button pulls down another menu that contains the **Channel Selection Bar** field and if activated will display the Channel Selection window.

The Channel Selection window contains all the station name components that were previously defined in the **ICP Station Parameters-Name Definition** in paragraph 4.2.1.1. Each station component can be configured to be on or off. By clicking the individual ON/OFF windows, the operator controls whether or not that station component has a window for displaying waveform data. Any number of channels can be selected to be active, however, as the number increases the resolution of each waveform window decreases.


Figure 4-18 Channel Selection Bar pull-down screen

4.5.2 Offset Adjustment

Two methods are used to compensate for an offset inherent to the signal. Initially, the display offset value is set to zero. To incorporate an offset into a particular display window the operator can manually enter the desired offset value in the **Offset** field. A pull-down menu below this field determines which waveform the offset is being applied to. When invoked, the pull down window will display the station component names that are active. After associating the correct offset value to the appropriate station component, the operator must use the **SpaceBar** to enable the change.

To activate an offset capability via mouse, select the **Operation** button on the ICP Real Time Display menu bar as shown in Figure 4-19. This operation provides the operator with the choice of activating the **Offset Adjustment** selection. Once selected, the mouse functions like an offset pointer when positioned inside the waveform window. The waveform will offset by the amount indicated by the position of the cursor in the direction of the horizontal axis. Click the left button on the mouse to implement the offset.



4.5.3 Display

Three embossed buttons labeled **Real Time/Stop, From File/Close,** and **Time/FTT** are inputs required for displaying the data. This selection applies to the entire ICP Real Time Display window. Thus, one window cannot display real time data while another one displays a waveform from a file.

- **Real Time/Stop** This selection displays near real time data received from the ICP system. When the Real Time function is active, the button is renamed to **Stop** which serves as the switch to stop acquiring real time data. The present mode of operation is displayed in the region above the three primary buttons.
- **From File/Close** Selecting the From File button allows the operator to display continuous or event waveform data from an archived file. The operator selects the properly formatted file (DADISP, SEISAN, PC-SUDS) to display. As shown in Figure 4-20, a **Channel Selection** dialog box appears which allows the operator to either open an archived data file from disk or remove an already open one from memory. After selecting a file to open, the **Channel Selection** window updates it format and includes a channel ON/OFF button for each station component found in the file structure. Like previously defined in paragraph 4.6.1, this button toggles the display window on and off. To end this display session click on the **Close** button.

			ICP File Display	•
	<u>Operation</u>	<u>H</u> elp	Channel Selection	
3 ? !!			Time Remove Open File	
ISPLAY				
rom File				1000000
leal Time				100000000
CLOSE				00000000
TILLE				200000000000000000000000000000000000000
TIME				20022000
set				000000000
				The second se
±				10000000
Ĩ				CERCITOR OF A
				0000000
ime Range				CONTRACTOR OF
				10000000
++				00000000
iew Scale 7				0000000
*				Successive Section Sec
				0000000
Second				
16.08				
Counts				
5				
•				+
r Help, press F	-1			

Time/FFT The **Time** button is used to define the horizontal axis in time units. This mode is active when Time is displayed on the button. The frequency domain is active when the button displays FFT, however, this function is not fully implemented at this time.

4.5.4 Time Range

The resolution of the horizontal scale can be changed and is controlled by the value that has been selected in the **Time Range** window. A small value will increase the resolution whereas a large number decreases it but provides a means for viewing more data. The minimum value allowed is .1 and the maximum is 120. The unit of measure is seconds. A selection of 120 allows the operator to view 120 seconds of data in the display window.

4.5.5 View Scale

The resolution of the vertical scale is controlled by the value that has been selected in the **View Scale** window. Similar to the Time Range function, this selection allows the operator to view the waveform data in different degrees of resolution. The values range from 1 to 21. A large value expands the vertical grid which provides for greater resolution.

4.5.6 Pointer Position

4.5.6.1 X Second

This window contains the value of the horizontal axis parameter where the cursor is pointing to.

4.5.6.2 Y Counts

This window contains the value of the waveform in terms of the vertical axis parameter. It is defined by the position of the cursor. The Y Count window is active only when the waveform is displayed **From File** or if the **Real Time** display has been stopped.

4.5.7 Time Marker

A click, hold, and drag Time Mark vertical bar is provided to identify the exact time of a particular point on the waveform. Initially, this bar is positioned to the far left of the display. Below the bar is a window displaying year, day, and time information as shown in Figure 4-21. The time in the display window is slightly different from true GPS time because of system delays.

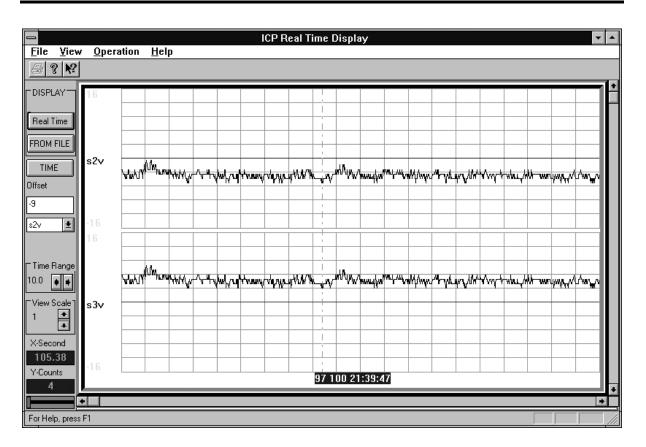


Figure 4-21 Scrolling Time Marker

4.5.8 Window Parameters

4.5.8.1 Range

Changing the vertical scale for each individual waveform window is accomplished by clicking the right mouse button on any region within the grid. A pop up menu as shown in Figure 4-22 contains the parameters that can be modified. Click on the **Range** button to activate the list. Expressed in counts, the vertical range is from 16 to 2147M.

4.5.8.2 Curve Color

To display the waveform in different colors click the right mouse button and select the **Curve Color** option. Another window pops up which allows the operator to choose from several different curve color options.

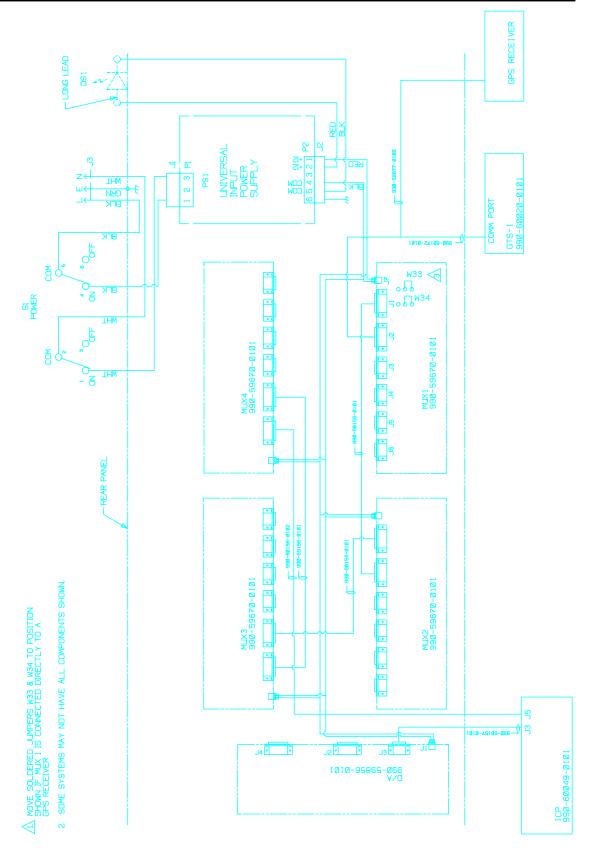
4.5.8.3 Background Color

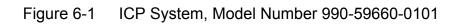
To display the background in different colors click the right mouse button and select the **Background Color** option. A second window pops up which allows for the selection of several different color options.

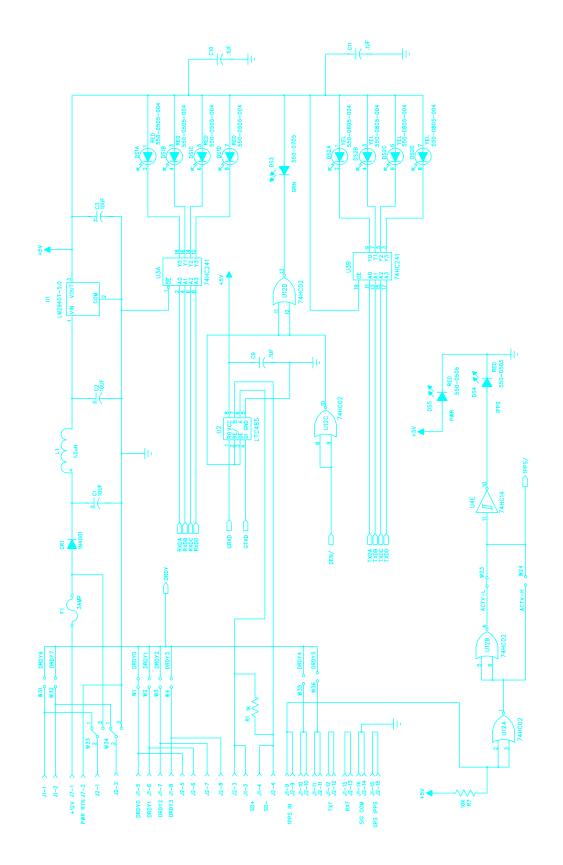
-	EV Real Time Display																					
	<u>V</u> iew	<u>O</u> pera	ation <u>I</u>	<u>l</u> elp																		
	? №?																				 	
	AY-	16					Prin Stat	t us Info														Ì
Real	[ime]							/e Colo	or Id Colo		6 i4 256											Ш
From	File						File				024 1096 6384											
ТІМ	IE									6 2	5536 62K											Ш
Offset										4	024K 1194K 6777K											
-5										2	268M 2147M											Ш
s2v	Ŧ	s2∨																				
⊤ Time I	Range			ł																		Ш
4.0	+ +																					Ш
View !	Scale]																					
	•																					Ш
X-Sec 104																						
Y-Cou	nts																					
4		-16			97.1	01 16:	51:43															
			_		- ACIRCI		ana makii					_	_	_	_	_	_		_	_	 	┛┛
			_		_		_									_	_	_				<u> </u>

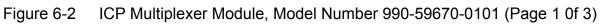
Figure 4-22 Range and Color Selection screen

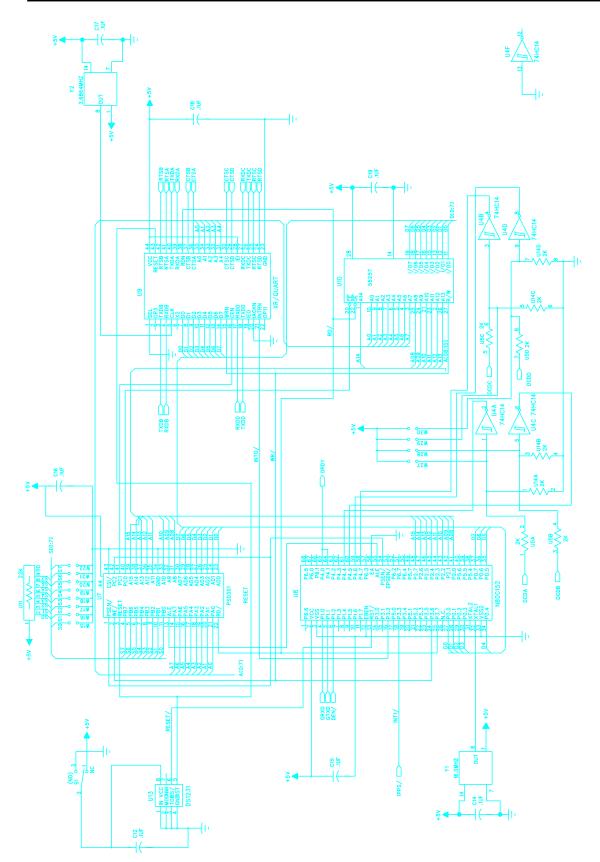
5. MAINTENANCE

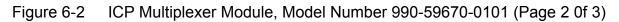

The ICP System is designed with the finest components available. After initial installation and configuration it should require minimal maintenance unless subject to abuse. Under normal operating conditions the system will require ocassional sofdtware maintenance due to loss of power or operator error. Should the system cease to operate, or operate in a less than optimum mode, two levels of maintenance actions are recommended. The first level requires the operator to halt then restart ICP operation. This action causes a reinitialization of ICP software and download of stored configuration information to the Multiport Controller devices. If this fails to correct the problem it is recommended system power be cycled to both the host computer and Multiport Controller, then system startup be initialized. Refer to the previous section of this document for operational procedures.

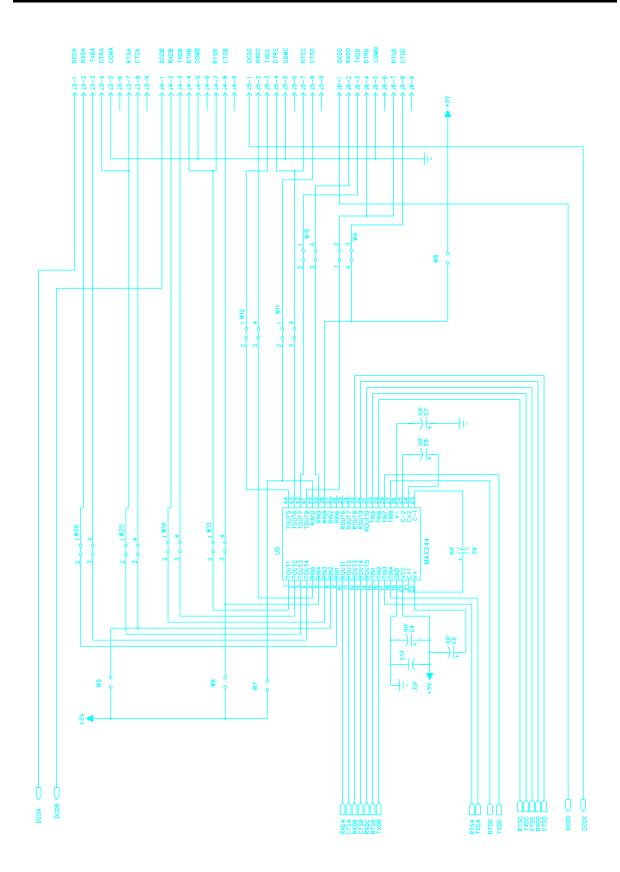

This page intentionally left blank

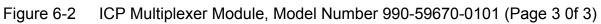

6. SCHEMATIC DIAGRAMS

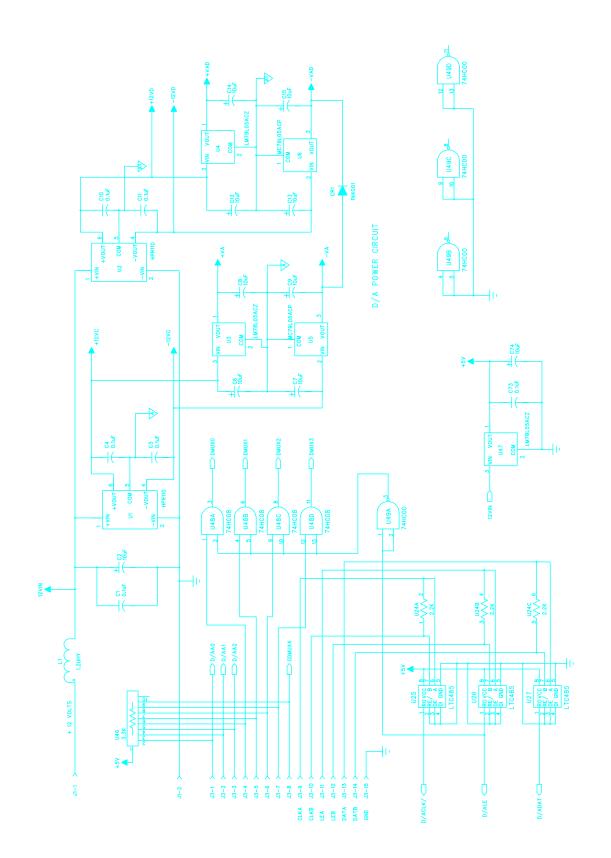

Schematic diagrams for the ICP System, modules and cables are included in this section. The following diagrams are included:

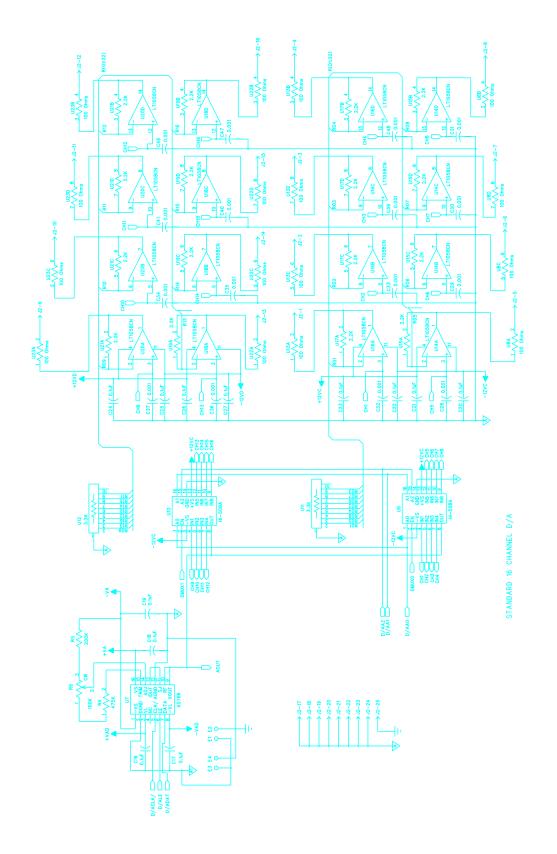

- Figure 6-1 ICP System, Model Number 990-59660-0101
- Figure 6-2 ICP Multiplexer Module, Model Number 990-59670-0101 (3 pages)
- Figure 6-3 32 Channel D/A Module, Part Number 990-59856-0101 (3 pages)
- Figure 6-4 ICP Host Interface, Part Number 990-60049-0101 (8 pages)
- Figure 6-5 ICP Multiplexer to Multiplexer Interface Module daisy chain cable, P/N 990-60156-0101
- Figure 6-6 ICP Multiplexer to Host Interface Module cable, P/N 990-60156-0102
- Figure 6-7 ICP Host Interface Module to D/A Module Interface Cable, P/N 990-60157-0101
- Figure 6-8 GTS-ONE to Multiplexer Module Interface Cable, P/N 990-60172-0101

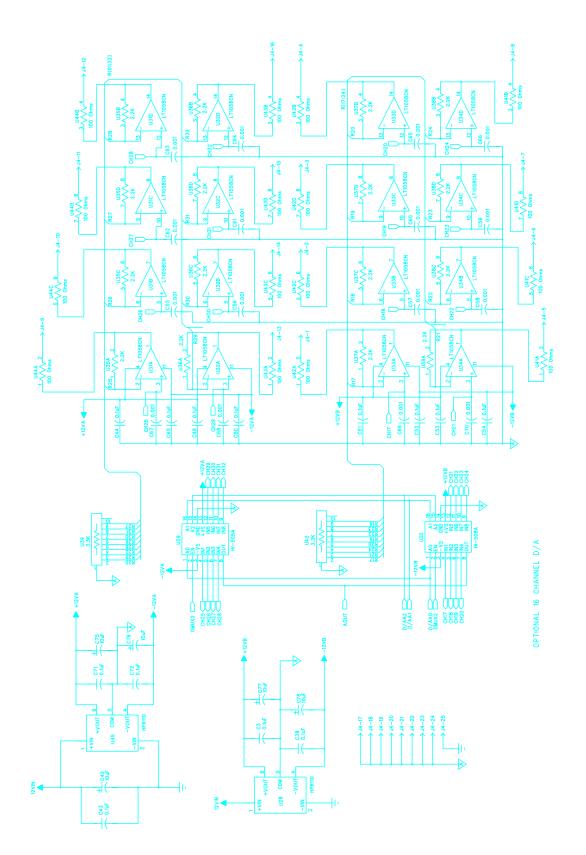


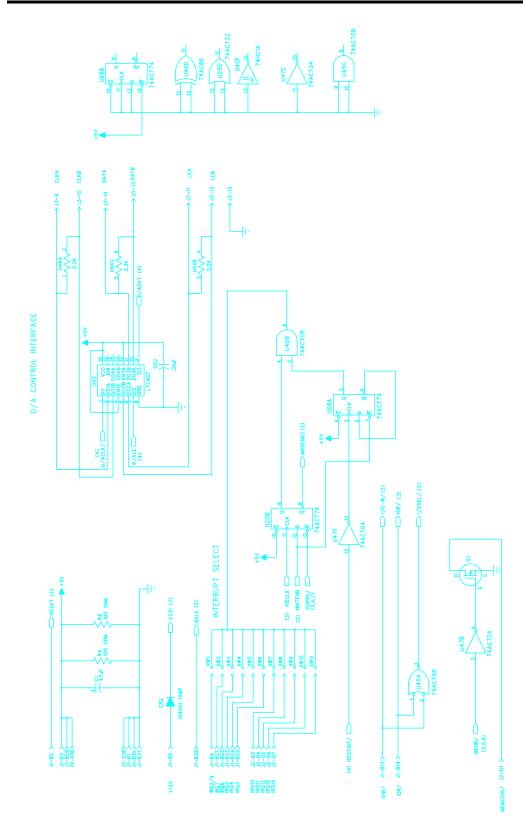


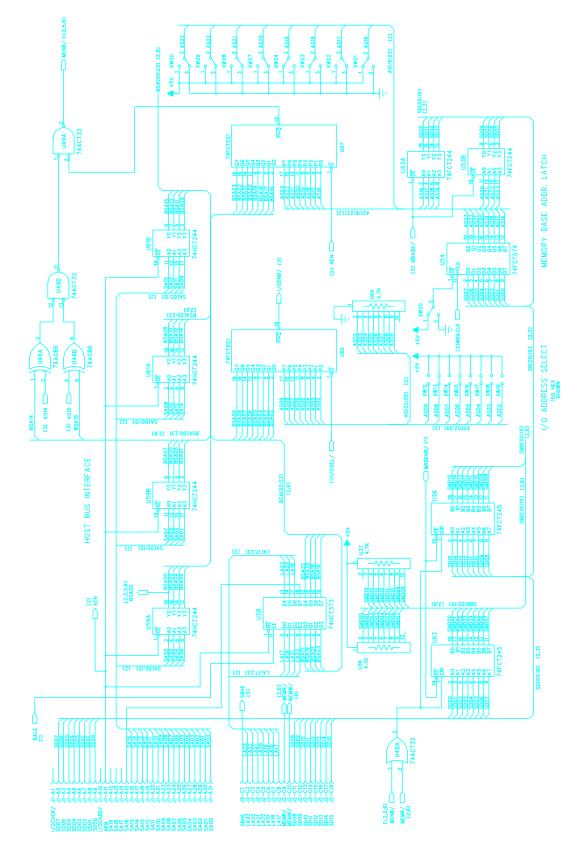


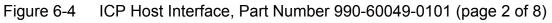


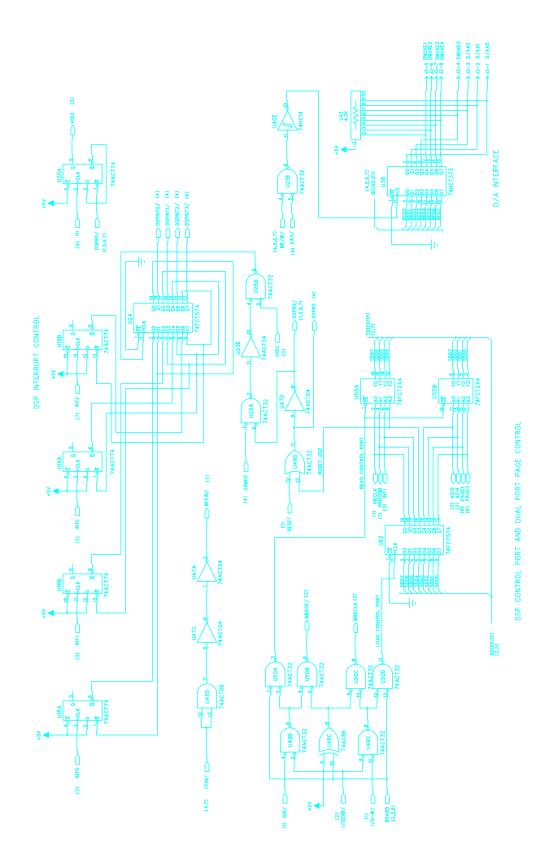


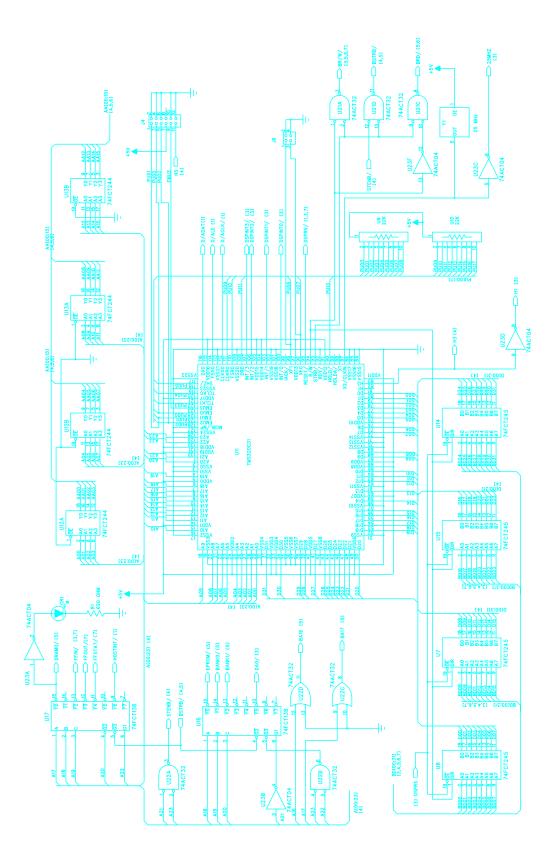


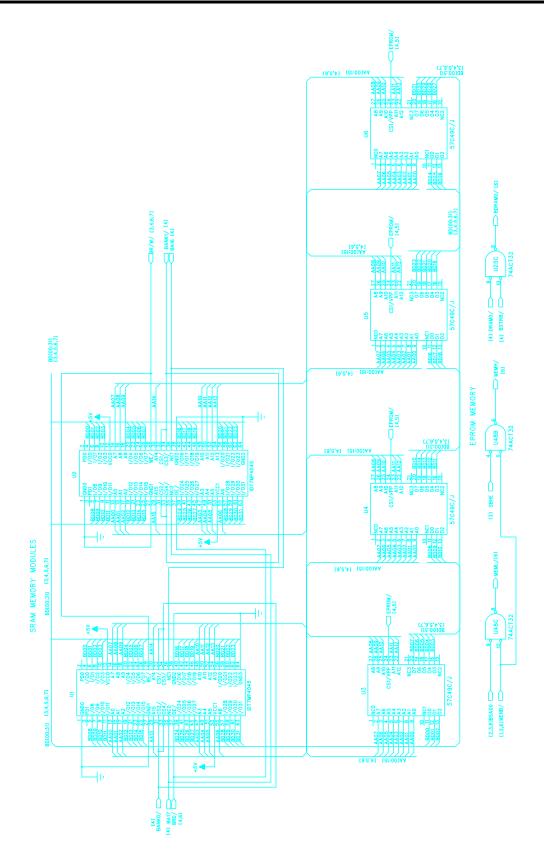


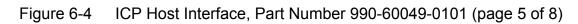


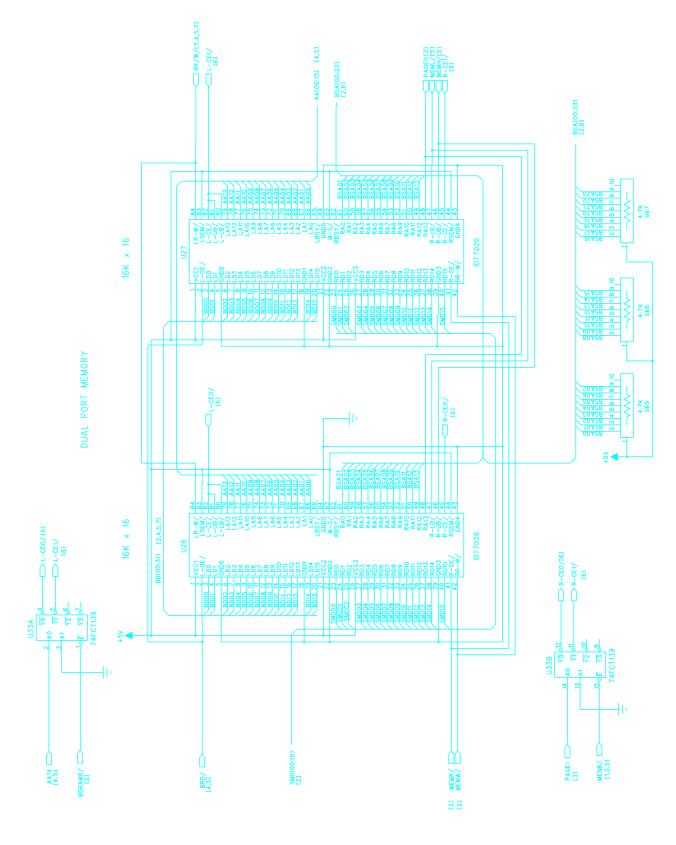


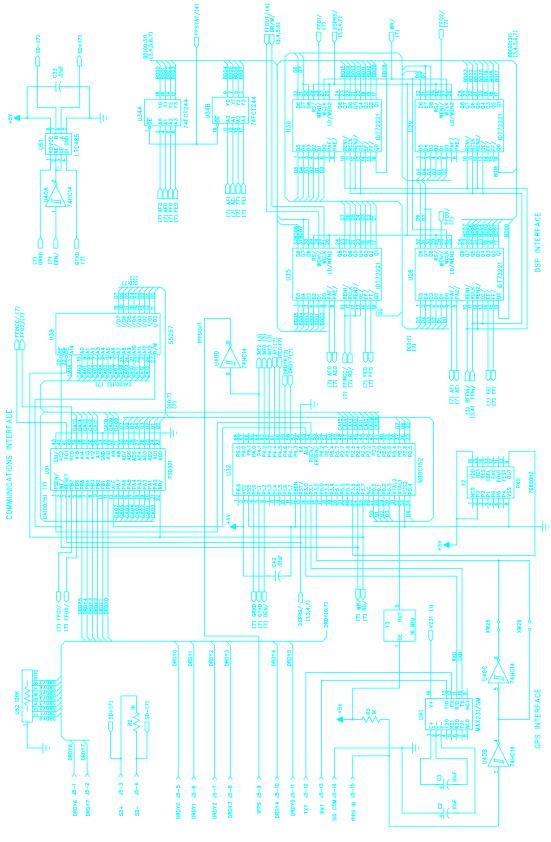


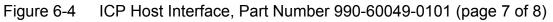


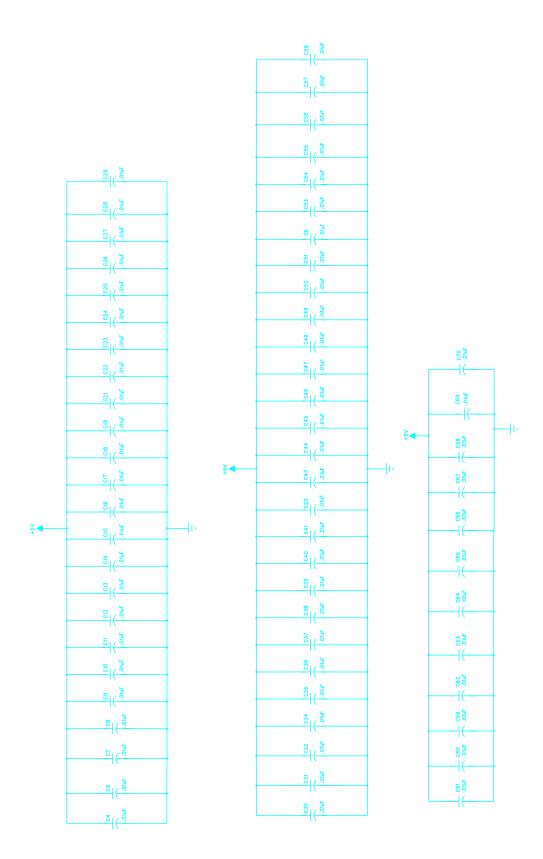












Schematic Diagrams

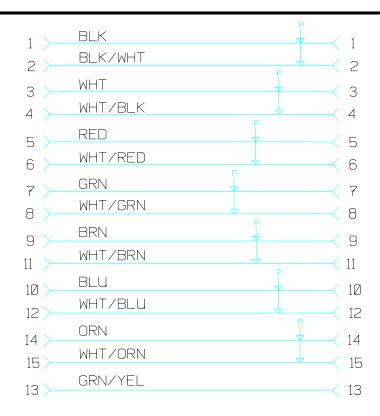
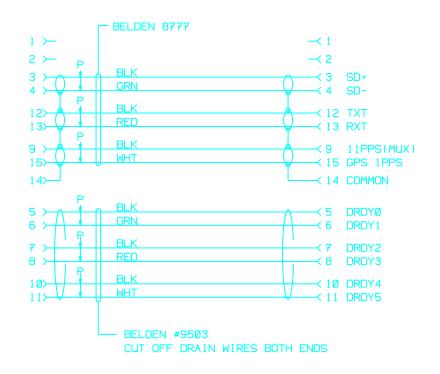
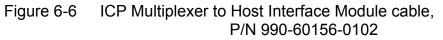




Figure 6-5 ICP Multiplexer to Multiplexer Module daisy chain cable, P/N 990-60156-0101.

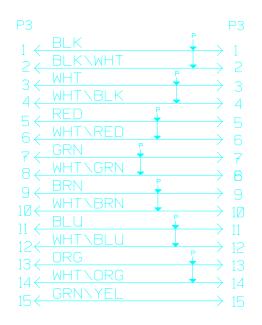
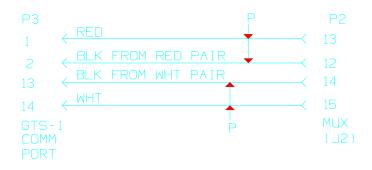
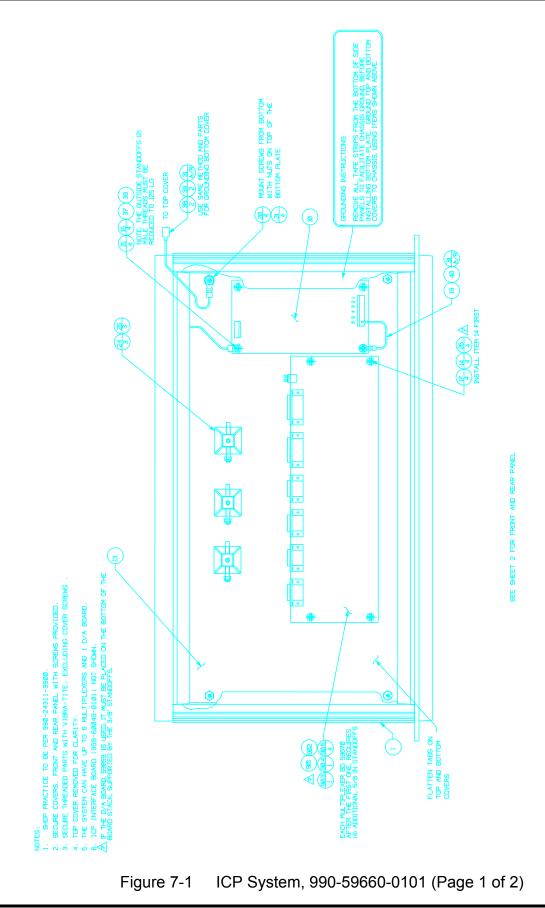
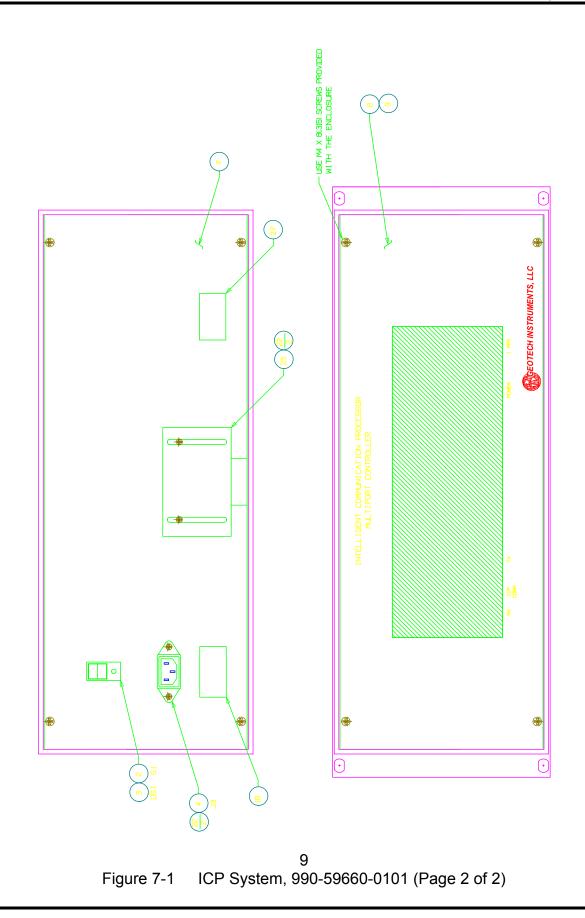


Figure 6-7 ICP Host Interface Module to D/A Module Interface Cable, P/N 990-60157-0101

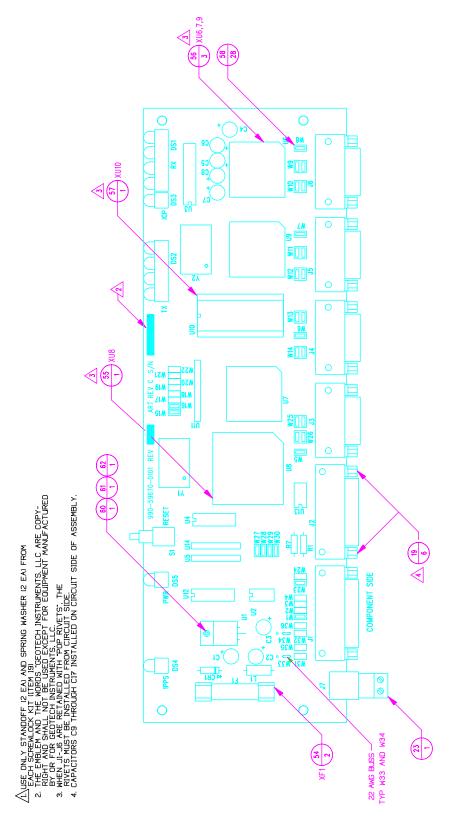

Figure 6-8 GTS-ONE to Multiplexer Module Interface Cable, P/N 990-60172-0101

PARTS LISTS AND ASSEMBLY DRAWINGS

Parts lists and assembly drawings for the ICP System are included in this section. The following Assemblies and Parts Lists are included:

- Figure 7-1 Assembly and Parts List, ICP System, 990-59660-0101
- Figure 7-2 Assembly and Parts List, ICP Multiplexer Module, 990-59670-0101
- Figure 7-3 Assembly and Parts List, 32 Channel D/A Module, 990-59856-0101
- Figure 7-4 Assembly and Parts List, ICP Host Interface, 990-60049-0101
- Figure 7-5 Assembly and Parts List, ICP Multiplexer to Multiplexer daisy chain cable, P/N 990-60156-0101
- Figure 7-6 Assembly and Parts List, ICP Multiplexer to Host Interface Module cable, P/N 990-60156-0102
- Figure 7-7 Assembly and Parts List, ICP Host Interface Module to D/A Module Interface Cable, P/N 990-60157-0101
- Figure 7-8 Assembly and Parts List, GTS-ONE to Multiplexer Module Interface Cable, P/N 990-60172-0101

GEOTECH INSTRUMENTS, LLC


SINGLE LEVEL BILL OF MATERIAL Date: Feb 16, 2000

ASSEMBLY: 9	905966001	01 ICP	SYSTEM	Engnr Relse E486	Engnr Rev	E5
<u>Component</u>	Item	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	Engnr Rev
015151082856	1	1.000	EA	ENCLOSURE,RACK <u>MANUFACTURER</u> SCHROFF	R59660 <u>MFG. PART NO</u> . 10828-056	-5
006407201522	2	1.000	EA	SWITCH,ROCKER,DP Ref: S1 <u>MANUFACTURER</u> C&K COMPONENTS	R59660 <u>MFG. PART NO</u> . 7201J52ZQE22	-5
062143028112	3	1.000	EA	DIODE,LIGHT EMITTING Ref: DS1 <u>MANUFACTURER</u> INDUSTERIAL DEVICES INC	R59660 <u>MFG. PART NO</u> . 4302H1-12V	-5
007425133010	4	1.000	EA	PLUG,POWER,AC,25OV,6 Ref: J3 <u>MANUFACTURER</u> SWITCHCRAFT INC	C44681 <u>MFG. PART NO</u> . EAC-309	В5
019011725000	5	1.000	EA	CORD,BUSINESS MACHINE,3 CONDUC TOR,7.5 FT Ref: PACKING LIST ITEM <u>MANUFACTURER</u> BELDEN MFG. CO.	R59660 <u>MFG. PART NO.</u> 17250	-5
990601530101	7	1.000	EA	BACK PANEL,MUX-D/A	R59660	-5
990601480101	8	1.000	EA	PANEL,FRONT,MUX-D/A	E48592	A5
990601490101	9	1.000	EA	WINDOW, FRONT PANEL	R59660	-5
065301623012	10	1.000	EA	POWER SUPPLY,30W Ref: PS1 <u>MANUFACTURE</u> R INTERNATIONAL PWR SOURCES	R60020 <u>MFG. PART NO.</u> PU30-12SL	-5
007769503061	11	1.000	EA	HOUSING,6 POS,.156 CC Ref: J2 <u>MANUFACTURER</u> MOLEX PRODUCTS	R60020 <u>MFG. PART NO</u> . 09-50-3061	-5
007769503031	12	1.000	EA	HOUSING,3 POS,.156 CC Ref: J1 <u>MANUFACTURER</u> MOLEX PRODUCTS	R60020 <u>MFG. PART NO</u> . 09-50-3031	-5
990601550101	13	1.000	EA	PLATE,BOTTOM	E48391	A5

ASSEMBLY: 99	905966001	01 ICP	SYSTEM	Engnr Relse E486	76 Engnr Rev	E5
Component	Item	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	Engnr Rev
315800020085	14	4.000	EA	1/4 HX,MALE-FEMALE,STDOFF3/8 L ONG,6-32 THD <u>MANUFACTURER</u> AMATOM ELECT HDW (MITE CORP) LYN-TRON INC GLOBE ELECTRONIC HARDWARE INC RAF ELECT HWD INC	E43966 <u>MFG. PART NO</u> 9738-SS-0632-7 SS-6981-0.375-01 SS-7302-632-12 4532-632-SS-20	A5
035260130400	15	4.000	EA	SCREW,MACH,PAN HD,CROSS RECESS ED,300 SER,SST,4-40 X 1/4 LG <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	E47758 A5 <u>MFG PART NO</u>	
315800020046	16	4.000	EA	STDOFF,M/F,1/2"LG,4-40 THD,SST <u>MANUFACTURER</u> RAF ELECTRONIC HARDWARE AMATOM ELECTRONIC HARDWARE	R59660 <u>MFG. PART NO</u> 4530-440-SS-20 9739-SS-440-7	-5
035260180400	17	4.000	EA	SCREW,MACH,PAN HD,CROSS RECESS ED,300 SER,SST,6-32 X 1/4 LG <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	C47758 <u>MFG. PART NO</u>	A5
990364300112	18	1.000	EA	TAG, PWR WARNING, 115/	R60020	-1
007768500134	19	7.000	EA	TERMINAL,CRIMP <u>MANUFACTURER</u> MOLEX PRODUCTS	R60020 <u>MFG. PART NO</u> . 08-50-0134	-5
035260180700	20	4.000	EA	SCREW,MACH,PAN HD,CROSS RECES SED,18-8 SST,6-32 X 7/16 LG <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	MFG. PART NO.	
038020180000	21	4.000	EA	NUT,HEX,CHAMFERED CORNER 18-8 SST,6-32 (5/16 AF X 7/64 THK) <u>MANUFACTURER</u> ANY AUTHORISED SUPPLIER	RELSD <u>MFG. PART NO.</u> MS35649-264	-5
035260130500	22	4.000	EA	SCREW,MACH,PAN HD,CROSS RECESS ED,300 SER,SST,4-40 X 5/16 LG <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	R59660 MFG. PART NO.	-5
990601540101	23	1.000	EA	COVER,CABLE,MUX-D/A <u>REFERENCE DRAWINGS</u> A 990-60154-1101 SLBOM	E48601	B5
015161500041	24	3.000	EA	MOUNT,CABLE TIE	C48080	A5
				MANUFACTURER DEC INC. PANDUIT CORP. DENNISON MFG. CO	<u>MFG. PART NO</u> . 0J0-0004A ABM2S-A-C 08462	

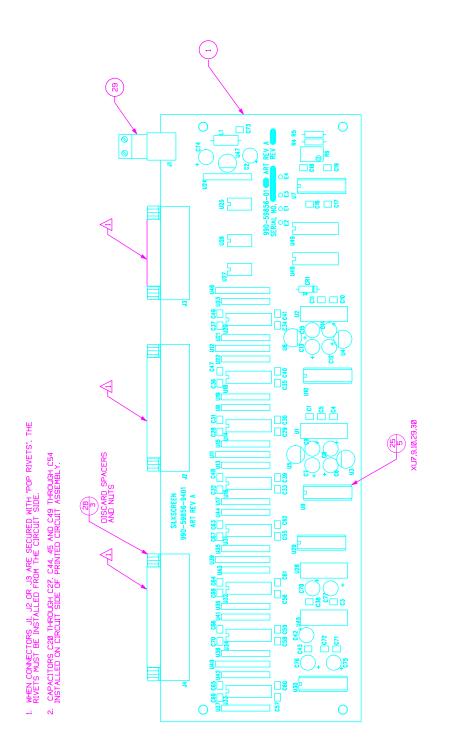
ASSEMBLY:	9905966001	01 ICP	SYSTEM	Engnr Relse E486	76 Engnr Rev E5	
<u>Component</u>	Item	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese E	ngnr Rev
015060153300	25	3.000	EA	TIE,CABLE,0-1 1/4 BUNDLE DIA <u>MANUFACTURER</u> PANDUIT CORP	RELSD <u>MFG. PART NO.</u> SST1.5M	-5
015803512310	26	4.000	EA	STDOFF,CONV,HX,.250,.138-32 THD,.625 LG,SST/PASSIVATED <u>MANUFACTURER</u> AMATOM ELECT HDW (MITE CORP) RAF LYN-TRON GLOBE ELECTRONIC HDW.	C48594 <u>MFG PART NO</u> 9740-SS-0632-7 4536-632-SS-20 SS-6981-0.625-01 SS-7306-632-12	A5
990049500103	27	1.000	EA	NAMEPLATE <u>REFERENCE DRAWINGS</u> A 990-04950-1003 INSTALLATION INSTRUC	E47884 CTIONS	E5
064062200120	29	36.000	IN	WIRE,ELECTRICAL,STRANDED,INSUL ATED,VINYL(TYPE B),22 AWG,WHT <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	RELSD <u>MFG. PART NO.</u> M16878/1-B-F-B-9	-5
064062200420	30	22.000	IN	WIRE,ELECTRICAL,STRANDED,INSUL ATED,VINYL(TP B),22 AWG,GRN <u>MANUFACTURER</u> ANY	RELSD <u>MFG. PART NO</u> .	-5
064062200220	31	52.000	IN	WIRE,ELECTRICAL,STRANDED,INSUL ATED,VINYL(TP B),22 AWG,BLK <u>MANUFACTURER</u> ANY	RELSD <u>MFG. PART NO.</u>	-5
064062200320	32	36.000	IN	WIRE,ELECTRICAL,STRANDED,INSUL ATED,VINYL(TP B),22 AWG,RED <u>MANUFACTURER</u> ANY	RELSD <u>MFG. PART NO</u> .	-5
990601560102	33	1.000	EA	CABLE ASSY,MUX TO ICP Ref: PACKING LIST ITEM <u>REFERENCE DRAWINGS</u> A 990-60156-1102 SLBOM	E48682	B5
990596609801	34	1.000	EA	O&M MANUAL Ref: PACKING LIST ITEM	R9660	-5
990602160101	36	1.000	EA	SOFTWARE,ICP Ref: PACKING LIST ITEM <u>REFERENCE DRAWINGS</u> A 990-60216-1101 SLBOM	R59660	-5
008685014466	37	1.000	EA	TAB,QUICK DISC,.032 x .250 MANUFACTURER PC TECHNOLOGY/NEWARK	R59660 MFG. PART NO. MTL-2503-A-MT/50N46	-5 66
008012599200	38	3.000	EA	RECEPTACLE,TAB(.032 X.250),22- 18 AWG,RED SLEEVE <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	C43170 <u>MFG PART N</u> O 640903-1	A5

ASSEMBLY: 9	905966001	101 ICP	SYSTEN	Lengnr Relse E486	76 En	gnr Rev E	5
Component	Item	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	2	Engnr Rev
008013615200	39	2.000	EA	LUG,CRIMP,RING,22-16 AWG RED, NO. 6 <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	<u>MFG PART</u> 36152	NO	
374011002202	40	1.000	EA	LUG,CRIMP,RING,22-16 AWG,NO.4 STUD,RED SLEEVE * <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	NONE <u>MFG PART</u> 320882	NO	A5
990598560101	901	0.000	EA	ASSEMBY,32 CHANNEL D/A <u>REFERENCE DRAWINGS</u> A 990-59856-1101 SLBOM D 990-59856-2101 SCHEMATIC	E48478		F5
990601570101	902	0.000	EA	CABLE ASSY,D/A TO ICP <u>REFERENCE DRAWINGS</u> A 990-60157-1101 SLBOM	E48683		A5
990596700101	903	0.000	EA	ICP MULTIPLEXER ASSEMBLY Ref: MINIMUM OF ONE BOARD REQUIRED <u>REFERENCE DRAWI</u> NGS A 990-59670-1101 SLBOM D 990-59670-2101 SCHEMATIC	E48480 /SYSTEM		E5
990601560101	904	0.000	EA	CABLE ASSY,MUX TO MUX Ref: 1 REQ'D FOR EACH ITEM 903 USED <u>REFERENCE DRAWINGS</u> A-990-60156-1101 SLBOM	E48681		В5
015803512310	905	0.000	EA	STDOFF,CONV,HX,.250,.138-32 THD,.625 LG,SST/PASSIVATED <u>MANUFACTURER</u> AMATOM ELECT HDW (MITE CORP) RAF LYN-TRON GLOBE ELECTRONIC HDW.	C48594 <u>MFG PART</u> 9740-SS-063 4536-632-SS SS-6981-0.6 SS-7306-632	2-7 -20 25-01	A5
990600490101	906	0.000	EA	ICP/HOST INTERFACE Ref: PACKING LIST ITEM,ONE REQUIRED/3 BOARD IS INSTALLED IN THE COMPUTER <u>REFERENCE DRAWINGS</u> A 990-60049-1101 SLBOM D 990-60049-2101 SCHEMATIC			C5
990598770106	913	0.000	EA	RECEIVER & CABLE ASSY MUX-GPS	E48613		Н5
990601720101	914	0.000	EA	CABLE ASSY,MUX TO GTS-1 <u>REFERENCE DRAWINGS</u> A 990-60172-1101 SLBOM	E48684		В5

Geotech Instruments, LLC

SINGLE LEVEL BILL OF MATERIAL Date: Feb 16, 2000

ASSEMBLY: 9	90596700	101 ICP	MULTI	PLEXER ASSEMBLY	Engnr Relse E48480	Engnr Rev E5
Component	Item	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	Engnr Rev
990596700201	1	1.000	EA	FAB-4 CH MULTIPLEXER	E48589	E5
002710250712	4	3.000	EA	CAPACITOR,10MF,25V,10% Ref: C1,2,3 <u>MANUFACTURER</u> SPRAGUE ELECTRIC CO	C42644 <u>MFG PART NO</u> 196D106X9025KA	A5
				SPRAGUE ELECTRIC CO	199D106X9025CA	
002610350712	5	5.000	EA	CAPACITOR,1.0 MF,35V,10 Ref: C4-8	C42736	A5
				<u>MANUFACTURER</u> SPRAGUE ELECTRIC CO SPRAGUE ELECTRIC CO	<u>MFG PART NO</u> 199D105X9035AA 196D105X9035HA	
502510500855	6	11.000	EA	CAPACITOR,0.1uF,50V,10%,SMT ON REEL TAPE,EIA PKG 1206 Ref: C9-19	R59660	-5
				MANUFACTURER JOHANSON DIELECTRIC PHILIPS COMPONENTS AVX CORP KEMET ELECTRONICS CORP	<u>MFG. PART NO</u> 500R18W104KV4I 12062R104K9BB0 12065C104KAT1A C1206C104K5RAC	
012010400100	11	1.000	EA	DIODE Ref: CR1	RELSD	-5
				<u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	<u>MFG PART NO</u> 1N4001	
062155005054	14	1.000	EA	LED,4 ELEMENT,5mm,RT ANGLE, Ref: DS1	R59660	-5
				<u>MANUFACTURER</u> DIALIGHT & DIALCO (DIGITRONI	CS) <u>MFG. PART NO</u> 50-0505-004	
062155008054	15	1.000	EA	LED,4 ELEMENT,5mm,YEL,RT ANG Ref: DS2	GLE R59660	-5
				<u>MANUFACTURER</u> DIALIGHT & DIALCO (DIGITRONI	CS) <u>MFG. PART NO</u> 550-0805-004	
062115500705	16	1.000	EA	LED,5mm,GRN,RT ANGLE Ref: DS3	R59660	-5
				<u>MANUFACTURER</u> DIALIGHT & DIALCO (DIGITRONI	MFG. PART NO. CS) 550-0705	
062115500505	17	2.000	EA	LED,5mm,RED,RT ANGLE Ref: DS4,5	R59660	-5
				<u>MANUFACTURER</u> DIALIGHT & DIALCO (DIGITRONI	<u>MFG. PART NO.</u> CS 550-0505	

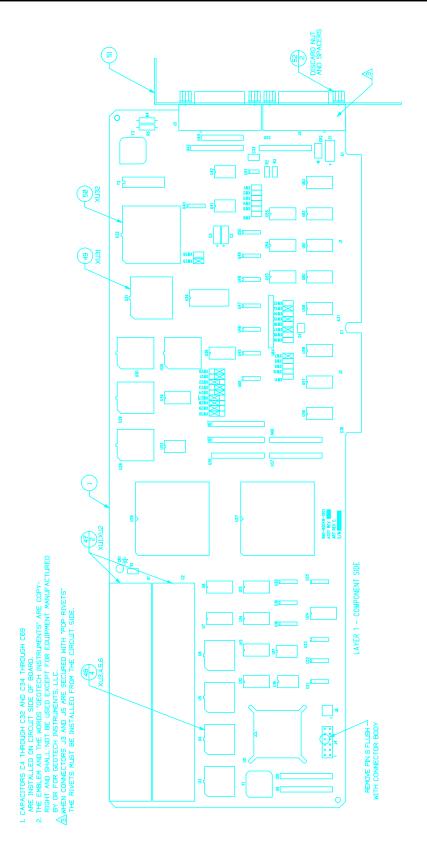

ASSEMBLY: 9	90596700	101 ICP	MULTI	IPLEXER ASSEMBLY Eng	gnr Relse E48480	Engnr Rev E5
<u>Component</u>	Item	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	Engnr Rev
004101030005	18	1.000	EA	FUSE,3AG,3 AMP,250V Ref: F1 <u>MANUFACTURER</u> LITTELFUSE BUSSMAN MFG(MCGRAY EDISON CO	<u>MFG PART NO</u> 312003 AGC 3	
007782058171	19	6.000	EA	SCREWLOCK,FEMALE <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	<u>MFG PART NO</u> 205817-1	
007787478414	20	2.000	EA	CONN,D,15 POS(PIN),RT ANGLE Ref: J1,2 SEE ITEM 905 FOR ALTERNATE <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	R60020 <u>MFG PART NO</u> 747841-4	-5
007787478404	21	4.000	EA	CONN,D,9 POS(PIN),RT ANGLE Ref: J3-6 SEE ITEM 906 FOR ALTERNATE <u>MANUFACTURER</u>	R60020 <u>MFG PART NO</u>	-5
007005122210	22	1.000	EA	AMP SPECIAL INDUSTRIES (AMF) HEADER,RT ANGLE,2 PIN Ref: J7 <u>MANUFACTURER</u> PRECISION CONNECTOR DESIGNSELI	747840-4 <u>MFG PART NO</u> FH02210	
007005082210	23	1.000	EA	PLUG BLOCK,RT ANGLE,2 POS Ref: P7 <u>MANUFACTURER</u> PRECISION CONNECTOR DESIGNSELI	R59660 <u>MFG. PART NO</u> FP02210	-5
001051001035	24	1.000	EA	RSTR,FXD,1K,1/4W,5% Ref: R1 <u>MANUFACTURER</u> ALLEN BRADLEY	5/3/82 <u>MFG PART NO</u> CB1025	-5
010017508802	25	1.000	EA	INDUCTOR,FIXED,SHIELDED 1.2Uh MS TYPE 75088-2 Ref: L1 <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER J. W. MILLER DELEVAN	C48660 MFG PART NO MS75088-2 9250-122 1641-122	A5
001061001035	26	1.000	EA	RSTR,FXD,10K,1/4W,5% Ref: R7 <u>MANUFACTURER</u> ALLEN BRADLEY	RELSD <u>MFG. PART NO</u> CB1035	-5
006402016120	28	1.000	EA	SWITCH,PUSHBUTTON,SPDT Ref: S1 MANUFACTURER C & K COMPONENTS INC	C47901 <u>MFG PART NO</u> TP12-SH9-ABE	A5

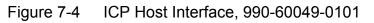
ASSEMBLY: 99	905967001	l01 ICP	MULTH	PLEXER ASSEMBLY	Engnr Relse E48480	Engnr Rev E5
<u>Component</u>	Item	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	Engnr Rev
012622904205	29	1.000	EA	REGULATOR,5V Ref: U1 <u>MANUFACTURER</u> NATIONAL SEMICONDUCTOR	<u>MFG PART NO</u> LM2940T-5.0	
012154853198	30	1.000	EA	LOW POWER RS485 INTERFACE Ref: U2 <u>MANUFACTURER</u> LINEAR TECHNOLOGY INC	<u>MFG PART NO</u> LTC485CN8	
012107483241	31	1.000	EA	IC,OCTAL BUFFER AND LINE DRI R,3 STATE OUTPUTS Ref: U3 <u>MANUFACTURER</u> TEXAS INSTRUMENTS	VE <u>MFG PART NO</u> SN74HC241N	
012107483014	32	1.000	EA	IC,HEX INVERTING Ref: U4 <u>MANUFACTURE</u> R MOTOROLA NATIONAL SEMICONDUCTOR	C47539 <u>MFG PART NO</u> MC74HC14N MM74HC14AN	A5
				RCA CORP TEXAS INSTRUMENTS	CD74HC14E SN74HC14N	
301712020804	33	2.000	EA	RSTR,NETWORK,2K,2%,SIP,4 RSTF 8 PIN, Ref: U5,14 <u>MANUFACTURER</u> TRW BOURNS INSTRUMENT INC CTS CORP	MFG PART NO 608-3-202G 4308R-102-202 750-83-2K	
012102443000	34	1.000	EA	RS-232 DRIVERS/RECEIVERS Ref: U6 <u>MANUFACTURER</u> MAXIM INTERGRATED PRODUCT	S MAX244CQH	
990597610101	35	1.000	EA	PROGRAMMABLE SYS DEVICE Ref: U7	R59670	-1
012438031522	36	1.000	EA	IC,COMMUNICATION CONTROLL 16.5 MHz Ref: U8 <u>MANUFACTURER</u> INTEL CORP	ER, C48663 <u>MFG PART NO</u> N80C152JB-1 (O	B5
				KAWASAKI	KS152JB3 (INTE REPLACEMENT	L N80C152JB-1
012638236843	37	1.000	EA	QUAD CHANNEL UART,CMOS Ref: U9 <u>MANUFACTURER</u> EXAR INTEGRATED SYS	<u>MFG PART NO</u> XR-82C684CJ/44	
012635525712	38	1.000	EA	IC,32K X 8 CMOS STATIC RAM Ref: U10 <u>MANUFACTURER</u>	C48376 <u>MFG PART NO</u>	C5
				TOSHIBA AMERICA INC	TC55257DPL-70	Ĺ

ASSEMBLY: 9	ASSEMBLY: 990596700101 ICP MULTIPLEXER ASSEMBLY Engnr Relse E48480 Engnr Rev E5									
<u>Component</u>	Item	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	Engnr Rev				
301712231009	39	1.000	EA	RSTR,NETWORK,22K,2%,SIP, PIN,9 RSTR Ref: U11	R00000	-5				
				MANUFACTURER CTS CORP BOURNS INSTRUMENT INC	MFG PART NO 750-101-R22K 4310R-101-223					
012107483002	40	1.000	EA	IC,QUAD 2-INPUT NOR GATE Ref: U12	R60020	-5				
				<u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	<u>MFG PART NO</u> 74HC02 PLSTC					
012991231200	41	1.000	EA	I.C., POWER MONITOR Ref: U13						
				<u>MANUFACTURER</u> DALLAS SEMICONDUCTOR CORP	<u>MFG PART NO</u> DS1231-20					
007787499122	42	4.000	EA	BACKSHELL KIT,9 PIN Ref: PACKING LIST (990-59660-8601) ITE		A5				
				<u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF	<u>MFG. PART NO</u> 749914-2					
007787479052	44	4.000	EA	CONNECTOR,9 PIN D,FEMALE Ref: PACKING LIST (990-59660-8601) ITE		-5				
				<u>MANUFACTURER</u> CINCH-JONES (TRW) AMP SPECIAL INDUSTRIES (AMF)	<u>MFG. PART NO</u> DE9S 747905-2					
007936550102	45	8.000	EA	CONNECTOR,2 POSITION Ref: XW5-8,31,32,35,36 <u>MANUFACTURER</u>	MFG. PART NO					
				BERG ELECT DIV OF DU PONT	65500-102					
007936510104	46	9.000	EA	CONNECTOR,4 POS Ref: XW9-14,23-26	C47759	A5				
				<u>MANUFACTURER</u> BERG ELECT DIV OF DU PONT	<u>MFG PART NO</u> 67996-104					
007936510108	47	2.000	EA	CONNECTOR,8 POS Ref: XW1-4,27-30	E47759	A5				
				<u>MANUFACTURER</u> BERG ELECT DIV OF DU PONT	<u>MFG PART NO</u> 67996-108					
007936510116	48	1.000	EA	CONNECTOR,16 POS Ref: XW15-22 MANUEACTURER	E47759 MFG PART NO	A5				
				<u>MANUFACTURER</u> BERG ELECT DIV OF DU PONT	<u>MFG PART NO</u> 67996-116					
011195116160	51	1.000	EA	CRYSTAL OSC,16.0MHZ Ref: Y1 SEE ITEM 900 AND 901 FOR ALTERNAT	R59660	-5				
				MANUFACTURER EPSON AMERICA INC	MFG PART NO SG-51P-16.000MH	Z01				

ASSEMBLY: 9	905967001	101 ICP	MULTI	PLEXER ASSEMBLY	Engnr R	else E48480 En	ignr Rev E5
<u>Component</u>	Item	<u>Qty Per</u>	<u>Um</u>	Component Description		Engnr Relese	Engnr Rev
011195116368	52	1.000	EA	CRYSTAL OSC,3.6864MHZ R Ref: Y2 SEE ITEM 902 AND 903 FOR ALTERN <u>MANUFACTURER</u> EPSON AMERICA INC	859660 NATES	-5 <u>MFG PART NO</u> SG-51P-3.6864MHZ	01
004200102069	54	2.000	EA	CLIP,FUSE,3AG,NICKEL PLATE Ref: XF1 <u>MANUFACTURER</u> LITTELFUSE		RELSD <u>MFG PART </u> NO 102074	-5
007376816410	55	1.000	EA	SOCKET,68 PIN,PLCC Ref: XU8 <u>MANUFACTURE</u> R BURNDY CORP		<u>MFG PART NO</u> QILE68P-410T	
007374416410	56	3.000	EA	SOCKET,44 PIN,PLCC Ref: XU6,7,9 <u>MANUFACTURER</u> BURNDY CORP		<u>MFG PART NO</u> QILE44P-410T	
007370281100	57	1.000	EA	SOCKET,I.C.,28 PIN Ref: XU10 <u>MANUFACTURER</u> BURNDY CORP		C48144 <u>MFG PART NO</u> DILB28P223T	A5
007936547404	58	28.000	EA	JUMPER, 100 CC Ref: W1,5-16,23,25-30 <u>MANUFACTURER</u> BERG ELECT DIV OF DU PONT		<u>MFG PART NO</u> 65474-010	
035260130400	60	0.000	EA	SCREW,MACH,PAN HD,CROSS RECI ED,300 SER,SST,4-40 X 1/4 LG <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	ESS	E47758 <u>MFG PART NO</u>	A5
038561080000	61	0.000	EA	WASHER,LOCK,INTERNAL TOOTH, SER SST,NO. 4 <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	400	RELSD <u>MFG PART NO</u> MS35333-70	-5
038050130000	62	1.000	EA	NUT,SML PAT,HEXAGON,4-40 300 S ER SST,UNC-2B <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER		RELSD <u>MFG PART NO</u> NAS671-C4	-A
011091345160	900	0.000	EA	CRYSTAL OSC,16.0MHZ Ref: ALTERNATE FOR ITEM 51 <u>MANUFACTURER</u> CTS KNIGHTS		R59660 <u>MFG PART NO</u> MX045-16.000MHZ	-5 01%
011135426016	901	0.000	EA	OSCILLATOR,CMOS,16.0MHZ Ref: ALTERNATE FOR ITEM 51 <u>MANUFACTURER</u> DALE ELECTRONICS INC		<u>MFG PART NO</u> XO-54B-60-16.0MHz	

ASSEMBLY: 9	905967001	IO1 ICP	MULTI	PLEXER ASSEMBLY Engni	Relse E48480	Engnr Rev E5
<u>Component</u>	Item	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	Engnr Rev
011091345368	902	0.000	EA	CRYSTAL OSC,3.68MHZ Ref: ALTERNATE FOR ITEM 52 <u>MANUFACTURER</u> CTS KNIGHTS	R59660 <u>MFG PART NO</u> MX045-3.6864M	-5 HZ01%
011135426036	903	0.000	EA	OSCILLATOR,CMOS,3.6864MHZ Ref: ALTERNATE FOR ITEM 52 MANUFACTURER DALE ELECTRONICS INC	<u>MFG PART NO</u> XO-54B-60-3.386	64MHz
040119030800	904	0.000	EA	RIVET,BLIND(POP),3/32 DIAX .126 250 GRIP,BODY-5 Ref: 2 EA REQUIRED FOR EACH 905 OR 9 <u>MANUFACTURER</u> POP FASTNER(DIV OF EMHART FAST	906 USED <u>MFG PART NO</u> AD34ABS	
007787472364	905	0.000	EA	CONNECTOR,15 POS,RT ANGLE Ref: ALTERNATE FOR ITEM 20 <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	<u>MFG PART NO</u> 747236-4	
007787472504	906	0.000	EA	CONNECTOR,9 POS RT ANGLE MALE Ref: ALTERNATE FOR ITEM 21 <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	<u>MFG PART NO</u> 747250-4	


ASSEMBLY	990598	560101	ASSEME	BY,32 CHANNEL D/A E	ngnr Relse E48478	Engnr Rev F5
Component	Item	<u>Qty Pe</u>	<u>r Um</u>	Component Description	Engnr Relese	Engnr Rev
990598560201	1	1.000	EA	FAB-32 CHANNEL D/A	E48432	E5
502310500855	2	32.000	EA	CAPACITOR,1000pF,50V,10%,SMT, ON REEL TAPE,EIA PKG 1206 Ref: C28-37,C39-41,C46-48,C55-70 <u>MANUFACTURER</u> JOHANSON DIELECTRIC KEMET ELECTRONICS CORP PHILIPS COMPONENTS AVX CORP	R59660 <u>MFG. PART NO</u> 500R18N102KV4E C1206C102KGAC 1206CG102K9BB0 12065A102KAT1A	
502510500855	3	31.000	EA	CAPACITOR,0.1uF,50V,10%,SMT, ON REEL TAPE,EIA PKG 1206 Ref: C1,C3-5,C10,C11,C16-27,C38,C43- <u>MANUFACTURER</u> JOHANSON DIELECTRIC PHILIPS COMPONENTS AVX CORP KEMET ELECTRONICS CORP	R59660 45,C49-54,C71-73 <u>MFG. PART NO</u> 500R18W104KV4E 12062R104K9BB0 12065C104KAT1A C1206C104K5RAC	
002710258684	4	15.000	EA	CAPACITOR,10MF,25V,20% Ref: C2,6-9,12-15,42,74-78 <u>MANUFACTURER</u> SPRAGUE ELECTRIC CO	<u>MFG PART NO</u> 199D106X0025CE2	2
064252210250	5	2.000	EA	WIRE,JUMPER,INSULATED,TEF,0.25 0 LG X 0.250 HIGH,22 AWG Ref: JUMPER, E1-E2, E3-E4 <u>MANUFACTURER</u> SQUIRES ELECTRONICS	C30682 <u>MFG. PART NO</u> J0.250X0.250T22	A1
012010400100	6	1.000	EA	DIODE Ref: CR1 <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	RELSD <u>MFG PART NO</u> 1N4001	-5
007787478464	7	2.000	EA	CONN,D,25 POS(SKT),RIGHT ANGLE Ref: J2.J4 <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	R59660 <u>MFG PART N</u> O 747846-4	-5
007787478454	8	1.000	EA	CONN,D,15 POS(SKT),RT ANGLE Ref: J3 <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	R60020 <u>MFG PART NO</u> 747845-4	-5
007005122210	9	1.000	EA	HEADER,RT ANGLE,2 PIN Ref: J1 <u>MANUFACTURER</u> PRECISION CONNECTOR DESIGNSE	<u>MFG PART NO</u> LFH02210	

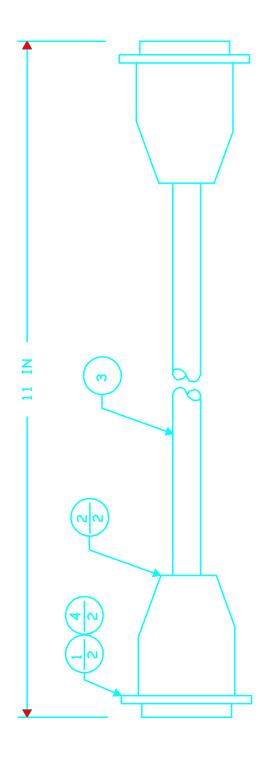

ASSEMBLY	990598	560101	ASSEMB	Y,32 CHANNEL D/A	Engnr Relse E48478	Engnr Rev F5
Component	Item	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	Engnr Rev
010017508802	10	1.000	EA	INDUCTOR,FIXED,SHIELDED 1.2u MS TYPE 75088-2 Ref: L1 <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER J. W. MILLER DELEVAN	H C48660 <u>MFG PART NO</u> MS75088-2 9250-122 1641-122	A5
065627500110	11	4.000	EA	CONVERTER,12V TO +/-12V Ref: U1,2,28,45 <u>MANUFACTURER</u> BURR BROWN RESEARCH CORP	<u>MFG PART NO</u> HPR110	
012627805130	12	3.000	EA	VOLTAGE REGULATOR,5V POS Ref: U3,4,47 <u>MANUFACTURER</u> TEXAS INSTRUMENTS NATIONAL SEMICONDUCTOR	C47719 <u>MFG PART NO</u> uA78L05ACLP LM78L05ACZ	A5
012627905130	13	2.000	EA	VOLTAGE REG,-5V,100MA Ref: U5,U6 <u>MANUFACTURER</u> MOTOROLA NATIONAL SEMICONDUCTOR	C44677 <u>MFG PART NO</u> MC79L05ACP LM79L05ACZ	A5
012154853198	14	3.000	EA	LOW POWER RS485 INTERFACE Ref: U25,U26,U27 <u>MANUFACTURER</u> LINEAR TECHNOLOGY INC	<u>MFG PART NO</u> LTC485CN8	
012100766000	15	1.000	EA	I.C. Ref: U7 <u>MANUFACTURER</u> ANALOG DEVICES INC	<u>MFG PART NO</u> AD766JN	
012621058314	16	8.000	EA	OP AMP,QUAD Ref: U14,16,18,20,31-34 <u>MANUFACTURER</u> LINEAR TECHNOLOGY INC	<u>MFG PART NO</u> LT1058CN	
012101310508	17	4.000	EA	8 CHANNEL ANALOG MUX Ref: U9,10,29,30 <u>MANUFACTURER</u> BURR BROWN RESEARCH CORP	C47899 <u>MFG PART NO</u> MPC-508AP	A5
001171009074	18	1.000	EA	RSTR,VAR,100K Ref: R6 <u>MANUFACTURER</u> BECKMAN INSTRUMENTS INC	<u>MFG PART NO</u> 68WR100K	
001072000901	19	1.000	EA	RSTR,FXD,200K,1/10 W,1% Ref: R5 <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	<u>MFG PART NO</u> RN55C2003F	

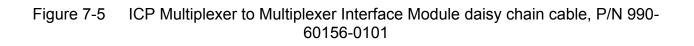
ICP System Installation and Operation Manual

ASSEMBLY	990598	560101	ASSEMI	BY,32 CHANNEL D/A E	ngnr Relse E48478	Engnr Rev F5
Component	Item	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	Engnr Rev
001074750901	20	1.000	EA	RSTR,FXD,475 K,1/10W,1% Ref: R4 <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	<u>MFG PART NO</u> RN55C4753F	
001753309067	21	5.000	EA	RSTR,3.3K,9 RSTR 10 PIN SIP,2% Ref: U11,12,39,40,46 <u>MANUFACTURER</u> DALE ELECTRONICS ING	<u>MFG PART NO</u> CSC09A-01-3320	3
007783312727	22	4.000	EA	SOCKET,SPRING,COMP LEAD,22 AW Ref: E1-E4 <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	7G RELSD <u>MFG. PART NO</u> 2-331272-7	-5
001752209067	23	9.000	EA	RSTR,2.2K,4 RSTR 8 PIN SIP Ref: U15,17,19,21,24,35-38 <u>MANUFACTURER</u> DALE ELECTRONICS INC	<u>MFG PART NO</u> CSC8A-03-222G	
001751009067	24	8.000	EA	RSTR,100 OHM,4 RSTR 8 PIN SIP Ref: U8,13,22,23,41-44 <u>MANUFACTURER</u> DALE ELECTRONICS INC	<u>MFG PART NO</u> CSC8A-03-101G	
007370161100	25	5.000	EA	SOCKET,I.C.,16 PIN Ref: XU7,XU9,XU10,XU29,XU30 <u>MANUFACTURER</u> BURNDY CORP	C48140 <u>MFG PART NO</u> DILB16P223T	A5
012107483000	26	1.000	EA	I.C.,QUAD 2-INPUT NAND GATE, HIGH SPEED Ref: U49 <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	R59660 <u>MFG PART NO</u> 74HC00 PLSTC	-5
012107483008	27	1.000	EA	I.C.,QUAD 2-INPUT AND GATE, HIGH SPEED Ref: U48 <u>MANUFACTURER</u> ANY AUTHORIZED SUPPLIER	R59660 <u>MFG PART NO</u> 74HC08 PLSTC	-5
007782058171	28	3.000	EA	SCREWLOCK,FEMALE <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF	<u>MFG PART NO</u> 205817-1	
007005082210	29	1.000	EA	PLUG BLOCK,RT ANGLE,2 POS Ref: PACKING LIST (990-59660-8601) <u>MANUFACTURER</u> PRECISION CONNECTOR DESIGNSE	MFG. PART NO	-5
007787479122	30	2.000	EA	PLUG,25 PIN,DB Ref: PACKING LIST (990-59660-8601) <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	R59660 ITEM <u>MFG. PART NO</u> 747912-2	-5

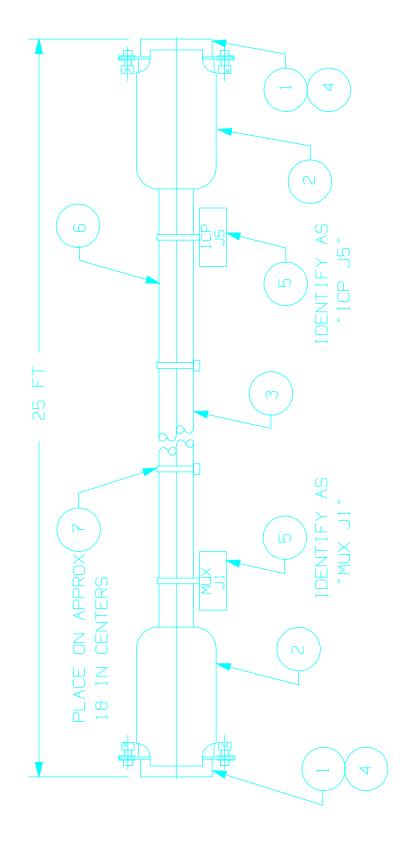
ASSEMBLY	9905985	560101	ASSEMB	Y,32 CHANNEL D/A E	Engnr R	else E48478	Engnr Rev F5
Component	Item	<u>Qty Per</u>	<u>Um</u>	Component Description		Engnr Relese	Engnr Rev
007787496262	31	2.000	EA	BACKSHELL KIT,25 PIN Ref: PACKING LIST (990-59660-8601)	ITEM	R59970	-5
				MANUFACTURER AMP SPECIAL INDUSTRIES (AMF)		<u>MFG. PART NO</u> 749626-2	
007787457834	900	0.000	EA	RECEPTACLE,25 PIN <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)		<u>MFG PART NO</u> 745783-4	
007787457824	901	0.000	EA	CONNECTOR,15 POS RT ANGLE <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)		<u>MFG PART NO</u> 745782-4	
040119030800	902	0.000	EA	RIVET,BLIND(POP),3/32 DIAX .12 6250 GRIP,BODY-5 <u>MANUFACTURER</u> POP FASTNER(DIV OF EMHART FAS	ST	<u>MFG PART NO</u> AD34ABS	

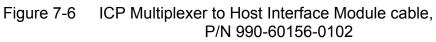
ASSEMBLY	990600	490101	ICP/HOS	ST INTERFACE	Engnr Relse E48643	Engnr Rev C5
<u>Component</u>	Item	<u>Qty Pe</u>	<u>r Um</u>	Component Description	Engnr Relese	Engnr Rev
990600490201	1	1.000	EA	FAB,ICP/HOST INTERFACE	E48643	C5
001752209067	2	1.000	EA	RSTR,2.2K,4 RSTR 8 PIN P Ref: U44 <u>MANUFACTURER</u> DALE ELECTRONICS INC	<u>MFG PART NO</u> CSC8A-03-222G	
007787478454	3	1.000	EA	CONN,D,15 POS(SKT),RT ANGLE Ref: J3 <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	R60020 <u>MFG PART NO</u> 747845-4	-5
007787478414	4	1.000	Ε	CONN,D,15 POS(PIN),RT ANGLE Ref: J5 <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	R60020 <u>MFG PART NO</u> 747841-4	-5
007936510104	5	1.000	EA	CONNECTOR,4 POS Ref: J6 <u>MANUFACTURER</u> BERG ELECT DIV OF DU PONT	C47759 <u>MFG PART NO</u> 67996-104	A5
007936510112	6	2.000	EA	CONNECTOR,12 POS,.100 CC (2X6) Ref: J4,XW1-XW6 <u>MANUFACTURER</u> BERG ELECT DIV OF DU PONT	E47759 <u>MFG PART NO</u> 67996-112	A5
007936550102	7	2.000	EA	CONNECTOR,2 POSITION Ref: XW25,XW26 <u>MANUFACTURER</u> BERG ELECT DIV OF DU PONT	<u>MFG. PART NO</u> 65500-102	
011011624768	8	1.000	EA	CRYSTAL OSC,.0064HZ TO 768KH Ref: Y2 <u>MANUFACTURER</u> EPSON CRYSTAL	z C48659 <u>MFG PART NO</u> SPG-8640CN	A5
011191972500	9	1.000	EA	CRYSTAL OSC,25.0 MHz Ref: Y1 <u>MANUFACTURER</u> EPSON AMERICA INC	<u>MFG PART NO</u> SG-531P25.000M	IHZ
012438031522	10	1.000	EA	IC,COMMUNICATION CONTROLL 16.5 MHz Ref: U32 <u>MANUFACTURER</u> INTEL CORP KAWASAKI	ER C48663 <u>MFG PART NO</u> N80C152JB-1 (O KS152JB3 (INTE REPLACEMENT	L N80C152JB-1


ASSEMBLY	9906004	490101	ICP/HOS	T INTERFACE	Engnr Relse E48643 Er	ngnr Rev C5
Component	Item	<u>Qty Per</u>	<u>r Um</u>	Component Description	Engnr Relese	Engnr Rev
012543201310	11	1.000	EA	I.C.DIGITAL SIGNAL PROCESSOR Ref: U11 <u>MANUFACTURER</u> TEXAS INSTRUMENTS	C48385 <u>MFG PART NO</u> TMS320C31PQL40	A5
990601470101	12	1.000	EA	PROGRAMMED DEVICE Ref: U31	R59660	-1
012637144045	13	2.000	EASTA	TIC RAM MODULE 256K X 32 BIT Ref: U1,U2 <u>MANUFACTURER</u> INTEGRATED DEVICES TECHNOLO	C48393 <u>MFG PART NO</u> DGY IDT7MP4045-S-20M	В5
062100821700	14	1.000	EA	LED,RED Ref: CR1 <u>MANUFACTURER</u> HEWLETT-PACKARD CO	MFG PART NO HLMP-1700	
301712231009	15	2.000	EA	RSTR,NETWORK,22K,2%,SIP,L-P,10 PIN,9 RSTR Ref: U9,U10 <u>MANUFACTURER</u> CTS CORP BOURNS INSTRUMENT INC	R00000 <u>MFG PART NO</u> 750-101-R22K 4310R-101-223	-5
301714721009	16	7.000	EA	RSTR,NETWORK,SIP,4.7K,2%, 10 PIN,9 RSTR Ref: U36,37,43,U64-67 <u>MANUFACTURER</u> BOURNS INSTRUMENT INC TRW CTS CORP	<u>MFG PART NO</u> 4310R-101-472 610-1-472G 750-101-R4.7K	
512635525726	17	1.000	EA	IC,CMOS RAM,32K x 8,SMT Ref: U39 <u>MANUFACTURER</u> TOSHIBA AMERICA INC	C48392 <u>MFG PART NO</u> TC55257DFL-70L	A5
512635734933	18	4.000	EA	PROM/RPROM,8K X 8 CMOS,SMT Ref: U3,4,5,6 <u>MANUFACTURER</u> WAFERSCALE INTERGRATION INC	R60050 <u>MFG PART NO</u> C WS57C49C-35J	-5
512107413086	19	1.000	EA	IC,QUAD XOR GATE,SMT Ref: U46 <u>MANUFACTURER</u> NATIONAL SEMICONDUCTOR	R59660 <u>MFG. PART NO</u> 74AC86SC	-5
512107413104	20	2.000		EA IC,HEX INV BUFFER,SMT Ref: U23,U47 <u>MANUFACTURER</u> NATIONAL SEMICONDUCTOR	R59660 <u>MFG PART NO</u> 74ACT04SC	-5
512107413108	21	1.000	EA	IC,QUAD AND GATE,SMT Ref: U45 <u>MANUFACTURER</u> NATIONAL SEMICONDUCTOR	R59660 <u>MFG PART NO</u> 74ACT08SC	-5


ASSEMBLY	990600	490101	ICP/HOS	T INTERFACE	Engnr Relse E48643	Engnr Rev C5
<u>Component</u>	Item	<u>Qty Per</u>	<u>r Um</u>	Component Description	Engnr Relese	Engnr Rev
512107413132	22	6.000	EA	IC,QUAD OR GATE,SMT Ref: U21,22,25,48,49,50 <u>MANUFACTURER</u> NATIONAL SEMICONDUCTOR	R59660 <u>MFG PART NO</u> 74ACT32SC	
512107413174	23	4.000	EA	IC,DUAL D FLIP-PLOP,SMT Ref: U18,19,20,68 <u>MANUFACTURER</u> NATIONAL SEMICONDUCTOR	R59660 <u>MFG PART NO</u> 74ACT74SC	
512637463138	24	2.000	EA	IC,GATED 3 TO 8 DECODER,SMT Ref: U16,17 <u>MANUFACTURER</u> INTEGRATED DEVICE TECHNOLO	R59660 <u>MFG. PART NO</u> DGY IDT74FCT138SO	-5
512637463139	25	1.000	EA	IC,DUAL 2 TO 4 DECODER,SMT Ref: U33 <u>MANUFACTURER</u> INTEGRATED DEVICE TECHNOLO	R59660 <u>MFG PART NO</u> DGY IDT74FCT139SO	-5
512637463244	26	5.000	EA	IC,DUAL 4 BIT BUFFER,SMT Ref: U12,13,34,53,55 <u>MANUFACTURER</u> EPSON AMERICA INC	R59660 <u>MFG PART NO</u> IDT74FCT244SO	-5
512637463245	27	6.000	EA	IC,BIDIRECT 8 BIT BUFFER,SMT Ref: U7,8,14,15,56,63 <u>MANUFACTURER</u> INTEGRATED DEVICE TECHNOLO	R59660 <u>MFG PART NO</u> DGY IDT74FCT245SO	-5
512637463521	28	2.000	EA	IC,8 BIT COMPARATOR,SMT Ref: U57,60 <u>MANUFACTURER</u> INTEGRATED DEVICE TECHNOLO	R59660 <u>MFG PART NO</u> DGY IDT74FCT521SO	-5
512637463574	29	3.000	EA	IC,8 BIT LATCH,SMT Ref: U24,54,62 <u>MANUFACTURER</u> INTEGRATED DEVICE TECHNOLO	R59660 <u>MFG PART NO</u> DGY IDT74FCT574SO	-5
512107481014	30	1.000	EA	I.C.,HEX INVERTING,SMT Ref: U40 <u>MANUFACTURER</u> SGS-THOMSON TOSHIBA AMERICA INC NATIONAL SEMICONDUCTOR HARRIS SEMICOND(HARRIS-INTE MOTOROLA PHILIPS COMPONENTS TEXAS INSTRUMENTS	C47767 <u>MFG PART NO</u> M74HC14M1 TC74HC14AFN MM74HC14AFN MC74HC14AD 74HC14D SN74HC14D	A5
512107482244	31	2.000	EA	IC,DUAL 4 BIT BUFFER, Ref: U59,61 <u>MANUFACTURER</u> TEXAS INSTRUMENTS	R59660 <u>MFG PART NO</u> SN74HCT244DW	-5

ASSEMBLY	990600490101	ICP/HO	ST INTERFACE	Engnr Relse E48643	Engnr Rev C5
<u>Component</u>	Item Qty	<u>Per Um</u>	Component Description	Engnr Relese	Engnr Rev
512107482373	32 2.000) EA	IC,8 BIT LATCH,SMT Ref: U38,58 <u>MANUFACTURER</u> TEXAS INSTRUMENTS	R59660 <u>MFG. PART NO</u> SN74HCT373DW	-5
502410508855	33 67.000	EA	CAPACITOR,.01uF,50V,20%,SMT, ON REEL TAPE,EIA PKG 1206 Ref: C4-70 <u>MANUFACTURER</u> JOHANSON DIELECTRIC PHILIPS COMPONENTS AVX CORP KEMET ELECTRONICS CORP	R59660 <u>MFG. PART NO</u> 500R18W103MV41 12062R103M9BB0 12065C103MAT1A C1206C103M5RA0	L.
502710160416	34 2.000) EA	CAPACITOR,10 MF,16V,10%,SMT ON REEL TAPE Ref: C2,C3 <u>MANUFACTURER</u> KEMET ELECTRONICS CORP. AVX CORP	C48499 <u>MFG. PART NO</u> T491C106K016AS TAJC106K016R	A5
502747100416	35 1.000) EA	CAPACITOR,47uF,10V,10%,SMT Ref: C1 <u>MANUFACTURER</u> KEMET ELECTRONICS CORP.	R59660 <u>MFG. PART NO</u> T491D476K010AS	-5
512010400100	36 1.000) EA	DIODE,1 AMP,SMT Ref: CR2 <u>MANUFACTURER</u> GENERAL INST(MICROELECT DIV	R59660 <u>MFG. PART NO</u>) GL41AT/R	-5
512637026155	37 2.000) EA	IC,DUAL PORT RAM,16K x 16,SMT Ref: U26,U27 <u>MANUFACTURER</u> INTEGRATED DEVICE TECHNOLO	R59660 MF <u>G. PART NO</u> IGY IDT7026S-55J	-5
512637222135	38 4.000) EA	IC,CLOCKED FIFO,1K x 9 Ref: U28,29,30,35 <u>MANUFACTURER</u> INTEGRATED DEVICE TECHNOLO	C48658 MFG. PART NO IDT72221L25J	A5
512154853198	39 1.000) EA	IC,RS485 TRANCEIVER,SMT Ref: U51 <u>MANUFACTURER</u> LINEAR TECHNOLOGY INC	R59660 <u>MFG. PART NO</u> LTC485CS8	-5
512154873140	40 1.000) EA	IC,QUAD RS485 DRIVER,SMT Ref: U42 <u>MANUFACTURER</u> LINEAR TECHNOLOGY INC	R59660 <u>MFG. PART NO</u> LCT487CS	-5
512102313235	41 1.000) EA	IC,DUAL RS232 TRANCEIVER,SMT Ref: U41 <u>MANUFACTURER</u> MAXIM INTERGRATED PRODUCT:	MFG. PART NO	-5


ASSEMBLY	9906004	490101	ICP/HOS	T INTERFACE	Engnr Relse E48643 E	ngnr Rev C5
Component	<u>Item</u>	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	Engnr Rev
512200138000	42	1.000	EA	IC,H-MOS SURFACE MOUNT,SMT Ref: Q1 <u>MANUFACTURER</u> ZETEX	R59660 <u>MFG. PART NO</u> BSS138ZXCT	-5
501051000876	43	2.000	EA	RSTR,FXD,1K,1/8W,5%,SMT ON TAPE REEL,EIA PKG 1206 Ref: R2,R3 <u>MANUFACTURER</u> DALE ELECTRONICS INC	C48217 <u>MFG. PART NO</u> CRCW1206102JRT1	В5
007968000103	44	9.000	EA	KOA SPEER ELECTRONICS AVX CORP CONNECTOR,3 POSITION Ref: XW20-XW24,XW27-XW30 <u>MANUFACTURER</u> BERG ELECT DIV OF DU PONT	RM73B2BT102J CR32-102J-T <u>MFG. PART NO</u> 68000-103	
501046200876	45	1.000	EA	RSTR,FXD,620 OHM,1/8W,5%,SMT ON REEL TAPE,EIA PKG 1206 Ref: R1 <u>MANUFACTURER</u>	R59660 MFG. PART NO	-5
011191971600	46	1.000	EA	DALE ELECTRONICS INC CRYSTAL,16.000 MHZ Ref: Y3 <u>MANUFACTURER</u> EPRONAMERICA DIC	CRCW1206621JL R59660 <u>MFG. PART NO</u>	-5
007366411911	47	2.000	EA	EPSON AMERICA INC CONNECTOR,64 PIN SIM 22.5 DEG (TIN) Ref: XU1,XU2 <u>MANUFACTURER</u>	<u>MFG. PART NO</u>	A5
507912820140	48	4.000	EA	MOLEX PRODUCTS CO SOCKET,SMT,28 PIN PLCC, W/O ALIGNMENT PINS Ref: XU3,4,5,6 <u>MANUFACTURER</u> SAMTEC	15-82-0664 R59660 <u>MFG. PART NO</u> PLCC-028-T-N	-5
507914420140	49	1.000	EA	SOCKET,SMT,44 PIN PLCC, W/O ALIGNMENT PINS Ref: XU31 <u>MANUFACTURER</u> SAMTEC	R59660 <u>MFG. PART NO</u> PLCC-044-T-N	-5
507916820140	50	1.000	EA	SOCKET,SMT,68 PIN PLCC, W/O ALIGNMENT PINS Ref: XU32 <u>MANUFACTURER</u> SAMTEC	R60070 <u>MFG. PART NO</u> PLCC-068-T-N	-5
020310100000	51	1.000	EA	SAMTEC BRACKET <u>MANUFACTURER</u> GLOBE MANUFACTURING SALES	<u>MFG. PART NO</u>	


ASSEMBLY	990600	490101	ICP/HOS	ST INTERFACE	Engnr Relse E48643	Engnr Rev C5
<u>Component</u>	Item	<u>Qty Per</u>	<u>r Um</u>	Component Description	Engnr Relese	Engnr Rev
007782058171	52	2.000	EA	SCREWLOCK,FEMALE <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	<u>MFG. PART NO</u> 205817-1	
007936510110	53	1.000	EA	CONNECTOR,10 POS Ref: XW7-XW11 <u>MANUFACTURER</u> BERG ELECT DIV OF DU PONT	E47759 <u>MFG. PART NO</u> 67996-110	A5
007936510116	54	1.000	EA	CONNECTOR,16 POS Ref: XW12-XW19 <u>MANUFACTURER</u>	E47759 <u>MFG. PART NO</u>	A5
301711041009	55	1.000	EA	BERG ELECT DIV OF DU PONT RSTR,NETWORK,100 K,2%,10 PIN, 9 RSTR (SCD 301-71000-0000) D - 6 U 52	67996-116 R00000	-5
				Ref: U52 <u>MANUFACTURER</u> BOURNS INSTRUMENT INC CTS CORP	<u>MFG. PART NO</u> 4310R-101-104 750-101-R100K	
001041003077	56	2.000	EA	RSTR,FXD,100 OHM,1W,2% Ref: R4,5 <u>MANUFACTURER</u> DALE ELECTRONICS ING	<u>MFG. PART NO</u> G-1-80-100 OHM-	2%
007936547404	57	14.000	EA	JUMPER,.100 CC Ref: W7,13,15,17,20-24,27-30 <u>MANUFACTURER</u> BERG ELECT DIV OF DU PONT	<u>MFG. PART NO</u> 65474-010	
007787457824	900	0.000	EA	CONNECTOR,15 POS RT ANGLE <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	<u>MFG. PART NO</u> 745782-4	
007787472364	901	0.000	EA	CONNECTOR,15 POS,RT ANGLE <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	<u>MFG. PART NO</u> 747236-4	
040119030800	902	0.000	EA	RIVET,BLIND(POP),3/32 DIAX .126 250 GRIP,BODY-5 <u>MANUFACTURER</u> POP FASTNER(DIV OF EMHART FA	MFG. PART NO AST AD34ABS	

ASSEMBLY	990601	560101	CABLE A	ASSY,MUX TO MUX	Engnr Relse E48681	Engnr Rev B5
Component	<u>Item</u>	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	Engnr Rev
007787479092	1	2.000	EA	PLUG,15 PIN,FEMALE,D <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF	R60020 <u>MFG. PART NO</u>) 747909-2	-5 <u>)</u>
007787499152	2	2.000	EA	BACKSHELL KIT,15 PIN,PLASTIC <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF	MFG. PART NO	-5 <u>)</u>
064122408515	3	12.000	IN	CABLE,7 1/2 PR,24AWG <u>MANUFACTURER</u> QUABBIN	R59660 <u>MFG. PART NO</u> 8515	-5 <u>).</u>
007782059801	4	2.000	EA	RETAINER KIT,MALE SCREW <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF	R59660 <u>MFG. PART NC</u> 205980-1	-5 <u>)</u> .

ASSEMBLY	9906015	60102	CABLE A	ASSY,MUX TO ICP	Engnr Relse E48682	Engnr Rev B5
<u>Component</u>	Item	<u>Qty Per</u>	<u>r Um</u>	Component Description	Engnr Relese	Engnr Rev
007787479092	1	2.000	EA	PLUG,15 PIN,FEMALE,D <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	R60020 <u>MFG. PART NO.</u> 747909-2	-5
007787499152	2	2.000	EA	BACKSHELL KIT,15 PIN,PLASTIC <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	R60020 <u>MFG. PART NO.</u> 749915-2	-5
064120877700	3	300.000	0 IN	CABLE,3 SHLD PR,22 AWG <u>MANUFACTURER</u> CAROL CABLE BELDEN MFG CO	C41206 <u>MFG PART NO</u> C6040 8777	A5
007782059801	4	2.000	EA	RETAINER KIT,MALE SCREW <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	R59660 <u>MFG. PART NO.</u> 205980-1	-5
015060061000	5	2.000	EA	MARKER,CABLE,TIE <u>MANUFACTURER</u> PANDUIT CORP.	R59660 <u>MFG. PART NO.</u> PLF1M	-5
064120950300	6	300.000	0 IN	CABLE,3 PR TWISTED,SHLD,24 AV <u>MANUFACTURER</u> QUABBIN BELDEN ALPHA CAROL CABLE	WG C48277 <u>MFG. PART NO.</u> 8115 9503 5473 C0602	A5
015060153300	7	16.000	EA	TIE,CABLE,0-1 1/4 BUNDLE DIA (NO SUBSTITUTION) <u>MANUFACTURER</u> PANDUIT CORP	RELSD <u>MFG. PART NO.</u> SST1.5M	-5

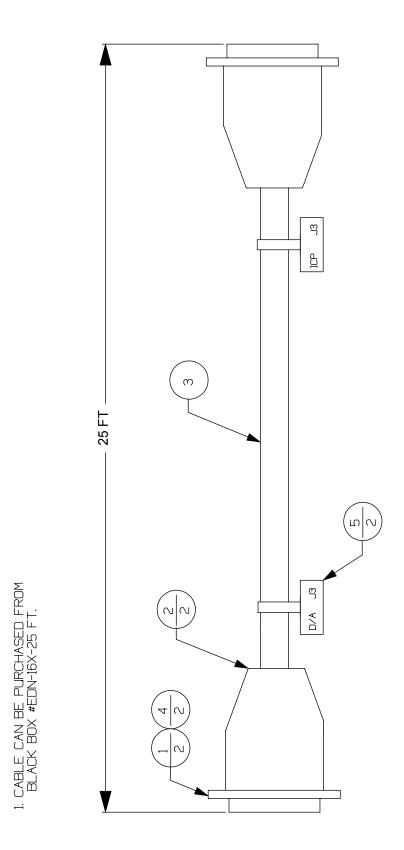
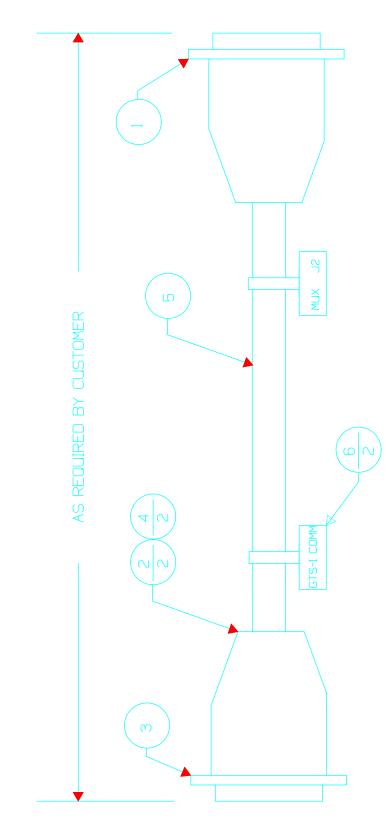



Figure 7-7 ICP Host Interface Module to D/A Module Interface Cable, P/N 990-60157-0101

ASSEMBLY	990601	570101	CABLE A	Date: Feb 16, 2000 ASSY,D/A TO ICP	Engnr Relse E48683	Engnr Rev A5
Component	Item	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	Engnr Rev
007787479082	1	2.000	EA	PLUG,15 PIN,MALE,D <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES	R60020 <u>MFG. PART NO.</u> 747908-2	-5
007787499152	2	2.000	EA	BACKSHELL KIT,15 PIN,PLASTIC <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF	MFG. PART NO.	-5
064122408515	3	300.000) IN	CABLE,7 1/2 PR,24AWG <u>MANUFACTURER</u> QUABBIN	R59660 <u>MFG PART NO.</u> 8515	-5
007782059801	4	2.000	EA	RETAINER KIT,MALE SCREW <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF	R59660 <u>MFG. PART NO.</u>) 205980-1	-5
015060061000	5	2.000	EA	MARKER,CABLE,TIE <u>MANUFACTURER</u> PANDUIT CORP.	R59660 <u>MFG. PART NO.</u> PLF1M	-5

ASSEMBLY	990601′	720101	CABLE A	ASSY,MUX TO GTS-1	Engnr Relse E48684	Engnr Rev B5
Component	Item	<u>Qty Per</u>	<u>Um</u>	Component Description	Engnr Relese	Engnr Rev
007787479092	1	1.000	EA	PLUG,15 PIN,FEMALE,D <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	R60020 <u>MFG. PART NO.</u>) 747909-2	-5
007787499152	2	2.000	EA	BACKSHELL KIT,15 PIN,PLASTIC <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	MFG. PART NO.	-5
007787479082	3	1.000	EA	PLUG,15 PIN,MALE,D <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES	R60020 <u>MFG. PART NO.</u> 747908-2	-5
007782059801	4	2.000	EA	RETAINER KIT,MALE SCREW <u>MANUFACTURER</u> AMP SPECIAL INDUSTRIES (AMF)	R59660 <u>MFG. PART NO.</u>) 205980-1	-5
064122408110	5	0.000	IN	CABLE,2 PR,24AWG <u>MANUFACTURER</u> BELDEN MFG. CO. QUABBIN BELDEN MFG CO	R59660 <u>MFG. PART NO.</u> 9502 8110 9502	-5
015060061000	6	2.000	EA	MARKER,CABLE,TIE <u>MANUFACTURER</u> PANDUIT CORP.	R59660 <u>MFG. PART NO.</u> PLF1M	-5

APPENDIX A

CSMA COMMUNICATIONS FORMAT FOR TWO WIRE CONNECTION BETWEEN ICP HOST INTERFACE AND THE ICP MULTIPLEXER

This page intentionally left blank

CSMA PROTOCOL

The connection between the ICP Control Interface Module and the Multiplexer Module(s) of the Multiport Controller utilizes Carrier Sense Multi-Access (CSMA) protocol. The link is controlled by the ICP Control Interface Module through commands from the host and a simple data ready acknowledge from the Multiplexer Module(s). When the ICP Control Interface Module sends an acknowledge to the Multiplexer the line is clear, and the ICP Control Interface Module is ready to accept information. The collision detect feature of the CSMA protocol is not implemented in this system in order to increase the bandwidth for high volume real-time data.

1.1 CSMA FRAME

The CSMA frame is generated and received through programmable hardware in the 80C152 communications controllers. The data is Manchester encoded by hardware. The general format for the Multiplexer Module to ICP Host Interface frame is as shown in the following:

|PREAMBLE||BOF||ADDRESS||INFORMATION||CRC||EOF|

where

(beginning of frame)

preamble	8 bits of alternating 1s and 0s
BOF	two successive 1s (part of the preamble)

Address 8 bits. Each Multiplexer Module has a unique address. Received addresses are decoded by programmable hardware. Transmitted addresses must be included in the information field. The following addresses are reserved for this system:

ICP Module	16
1st ICP Multiplexer	0
2nd ICP Multiplexer	1
3rd ICP Multiplexer	2
4th ICP Multiplexer	3
5th ICP Multiplexer	4
6th ICP Multiplexer	5
7th ICP Multiplexer	6 (Not implemented)
8th ICP Multiplexer	7 (Not implemented)

Information	Can be of any length of 8 bit bytes to a maximum of 65,535 bytes. The information field format is described in section 2.
CRC	16 bits, hardware generated and hardware tested.

EOF (End of frame) idle condition.

2. INFORMATION FIELDS

2.1 GENERAL

The information field is user defined. The general format is:

|SIZE||TYPE||PORT*||DATA|

* or Multiplexer (for status block)

- Where
- Size Defines the size of the information block. The Size field is 2 bytes in length with least significant byte first.
- TypeTwo bytes defining the data type included in the Information
field. Data type codes are
 - 01h ICP to Multiplexer configuration block
 - 02h Not used
 - 03h ICP to Multiplexer data ready acknowledge
 - 04h Not Used
 - 05h ICP to Multiplexer transparent data to transmit
 - 06h Multiplexer to ICP status block
 - 07h ICP to Multiplexer port activate command
 - 08h Multiplexer to ICP data received (followed by **Data**)
 - 09h ICP to Multiplexer request for status
 - 0Ah Multiplexer to ICP transparent data received (followed by data)
 - 0Bh ICP to Multiplexer port reset command
 - 0Ch Multiplexer to ICP transparent acknowledge received
 - 0Dh ICP to Multiplexer reset all command
 - 0Eh ICP to Multiplexer reset port second command
- Port One byte identifying which Multiplexer RS-232 port (A, B, C, or D) the data is associated with. Port ID's are

Port A0Port B1Port C2Port D3

Data field associated with previous Size, Type and Port fields.

2.2 DATA BLOCKS

2.2.1 Configuration Block (from ICP)

Byte 1 Operating Mode

0 = DTS Data 1 = Transparent Data

- Byte 2 Baud Rate Code
 - 1200 Baud = 66 Hex 2400 Baud = 88 Hex 4800 Baud = 99 Hex 9600 Baud = BB Hex 19.2KBaud = C0 Hex 38.4KBaud = CC Hex
- Byte 3 Block Size To Receive, least significant byte (Block size is total number of bytes in a one second data frame, less the two byte check sum)
- Byte 4 Block Size To Receive, most significant byte (see above) Examples: 12 Bit Data, at 50 samples per second and 3 components = (50 x 3 x 3)/2 + 6 = 231 bytes

12 Bit Data, at 100 samples per second and 1 component = $(100 \times 3)/2 + 6 = 156$ bytes

16 Bit Data, at 100 samples per second and 3 components = $100 \times 3 \times 2 + 6 = 606$ bytes

16 Bit Data, at 100 samples per second and 1 component = $100 \times 2 + 6 = 206$ bytes

24 Bit Data, at 50 samples per second and 3 components = $50 \times 3 \times 3 + 6 + 3 \times 2 = 462$ bytes

24 Bit Data, at 100 samples per second and 3 components = $100 \times 3 \times 3 + 6 + 3 \times 2 = 912$ bytes

Byte 5	Data Type Code (presently defined)
	6C Hex = 12 Bit Data 16 Hex = 16 Bit Data 49 Hex = 24 Bit Data
Byte 6 Byte 7 Byte 8 Byte 9	Station Code (0 to 255) Number of Components (1, 2 or 3) Sample Rate (50 or 100 samples per second) Fractional Transmission Delay (DTS Mode Only)
	0 to 199 times 5 milliseconds (0 to 1 second).
Byte 10	Present Second (0 - 59)

Additional bytes will be added to accommodate the Transparent Mode.

2.2.2 Status Block (from Multiplexer)

The Multiplexer sets status bits as required. The status bits are cleared after status has been requested and sent. Byte-wise information field is as follows:

BI	ock Size Type ID Status Bytes
Where	
Block Size	2 byte field indicating total status block length, least significant byte first (value always = 9 bytes).
Туре	Data type code, one byte, value = 06h (See paragraph 2.1)
ID	One byte denoting Multiplexer ID (0 to 7)
Status Byte	Five bytes denoting Multiplexer, port A, port B, port C and port D status respectively.

2.2.2.1 Multiplexer Status

Multiplexer status bits are true high and carry the following definitions:

Bit 0	Multiplexer idle
Bit 1	No 1 PPS

Bits 2 - 7 Reserved

2.2.2.2 Port Status

Multiplexer port status bits are true high and defined as follows:

- Bit 0 Port configured
- Bit 1 Port active
- Bit 2 No Data Received
- Bit 3 Check Sum Error
- Bit 4 Wrong Data Type Received valid only when receiving data
- Bit 5 Wrong Sample Rate Received valid only when receiving data
- Bit 6 Wrong Number of Channels Received valid only when receiving data
- Bit 7 Wrong Station Code Received valid only when receiving data

2.2.3 DTS Data Block

The DTS data block will have a three byte header followed by Channel 1 data. Channel 2 data then Channel 3 data will follow if this data is available. The data is in a 24 bit format at 100 samples per second. If the data is received in a 50 sample per second format each sample received is stored twice.

The received data is time aligned to the local 1 PPS input. The data ready flag to the host computer is seen about 10 to 100 milliseconds after the end of a transmission. Because of variables in time of transmission and transmission block length the block may be received by the ICP Host Interface in less than 2 seconds, or some time greater than 2 seconds after the first sample in the block was sampled. The header will consist of Station Code, Number of Components and Captured Second.

This page intentionally left blank

APPENDIX B

DTS DATA FORMAT FROM ICP MULTIPLEXER TO ICP HOST INTERFACE MODULE

This page intentionally left blank

DTS DATA FORMAT

FROM ICP MULTIPLEXERTO ICP COMMUNICATIONS CONTROLLER

The data is received in one second blocks and re transmitted in one second time aligned blocks. Each block will represent data from one port. The data is formatted for 100 sps and 24 bits including sign extension if necessary. Two different size blocks will be received by the controller, single component blocks and three component blocks. See Appendix A for overall protocol.

DATA HEADER

Byte 1	(32h for single component or 8Ah for 3 component data)
Byte 2	Most significant byte of block length (01h for single component or 03h for 3 component data)
Byte 3	Type block (08h)
Byte 4	Port ID (wh for Port ID 0.1.2, or 3)

- Byte 4 Port ID (xxh for Port ID 0,1,2, or 3)
- Byte 5 Station Address (xxh, where address = 0 to 255)
- Byte 6 Number of Components (01h or 03h)
- Byte 7 Second of block (xxh where second = 0 to 59)
- Byte 8 00H

SINGLE COMPONENT DATA FORMAT

Each single component data channel block contains one second of data. This data is presented in the following order:

First Sample in Second	Least Significant Byte Next Most Significant Byte Most Significant Byte	Channel 1
Last Sample in Second	Least Significant Byte Next Most Significant Byte Most Significant Byte	

THREE COMPONENT DATA FORMAT

Each three component data channel block contains a one second block of data for each component. This data is presented in the following order:

First Sample in Second • • • • • • • • • • • • • • • •	Least Significant Byte Next Most Significant Byte Most Significant Byte	Channel 1
Sample in Second	Next Most Significant Byte Most Significant Byte	
First Sample in Second	Least Significant Byte Next Most Significant Byte Most Significant Byte	Channel 2
• Last Sample in Second	• Least Significant Byte Next Most Significant Byte Most Significant Byte	
First Sample in Second	Least Significant Byte Next Most Significant Byte Most Significant Byte	Channel 3
Last Sample in Second	Least Significant Byte Next Most Significant Byte Most Significant Byte	

APPENDIX C

ICP SYSTEM DIGITAL FILTER DESCRIPTIONS

This page intentionally left blank

ICP SYSTEM DIGITAL FILTER DESCRIPTIONS

The ICP System provides three sets of filter types for incoming raw data. These are: 1) Short Period band pass; 2) Long Period band pass; and 3) Band pass filters for the data sent to the event detector. All of the filters are implemented using 32 bit floating point.

The short period band pass is provided to the host for recording at the sample rate of the raw data (default is 100 samples per second). The high pass is an infinite impulse response (IIR) design using bilinear transformation to achieve a 2nd order Butterworth. The low pass filter is an equiripple finite impulse response (FIR) design with coefficients selected for minimum pass band ripple. The one second delay in this filter is corrected by the ICP.

At the present time the Long Period band pass is implemented as a very long period low pass FIR design with a cutoff frequency of 0.05 Hz. The filter is a two stage design. The first stage provides a cutoff at 2.0 Hz. with the stop band down 120dB at 4.0 Hz. The second stage is 3dB down at 0.06 Hz. and 120dB down at 0.1 Hz. The delay through the filter is 29 seconds.

The detector filter has a 1st order high pass Butterworth IIR design section and a 6th order low pass Butterworth IIR design section. The delay through this filter is approximately 1/Fo where Fo is the low pass corner frequency.

Filter coefficients for all ICP filter selections designed to date are shown in the following sections.

Coefficients for Detector Low-Pass Filters

Defines for low pass detector filters.

The low pass filter coefficients are for 6 pole Butterworth. The 1 Hertz filter is typical:

Filter Type	Low Pass
Analog Filter Type	Butterworth
Passband Ripple in dB	-3.0000 (maximum attenuation)
Stopband Ripple in dB	-120.0000 (minimum attenuation)
Passband Cutoff Freq.	0.100000E+01 Hz
Stopband Cutoff Freq.	0.100000E+02 Hz
Sampling Frequency	0.100000E+03 HZ
Filter Design Method	Bilinear Transformation
Filter Order	6 (0006h)
Number Of Sections	3 (0003h)
No. Of Quantized Bits	32 (0020h)
No. Of Quantized Bits	32 (0020h)
Quantization Type	Floating Point

Filter Type - 1 Hz LP - 6 Pole Butterworth Overall gain = 0.85514664E-09

Section	Coefficient ID	Coefficient
1	B1	2.000000
	B2	1.0000000
	A1	1.8818681
	A2	88559182
2	B1	2.0000000
	B2	1.0000000
	A1	1.9111620
	A2	91494368
3	B1	2.000000
	B2	1.0000000
	A1	1.9641181
	A2	96800457

Filter Type - 2 Hz LP - 6 Pole Butterworth Overall gain = 0.48750822E-07

Section	Coefficient ID	Coefficient
1	B1 B2 A1 A2	2.0000000 1.0000000 1.7698680 78394603
2	B1 B2 A1 A2	2.0000000 1.0000000 1.8226252 83712292
3	B1 B2 A1 A2	2.0000000 1.000000 1.9218503 93713725

Filter Type - 5 Hz LP - 6 Pole Butterworth Overall gain = 0.85948826E-05

Section	Coefficient ID	Coefficient
1	B1	2.000000
	B2	1.0000000
	A1	1.4646832
	A2	54012030
2	B1	2.0000000
	B2	1.0000000
	A1	1.5608507
	A2	64124075
3	B1	2.0000000
	B2	1.0000000
	A1	1.7611301
	A2	85183541

Filter Type - 10 Hz LP - 6 Pole Butterworth Overall gain = 0.34118372E-03

Section	Coefficient ID	Coefficient
1	B1	2.000000
	B2	1.0000000
	A1	1.0317753
	A2	27556004
2	B1	2.0000000
	B2	1.0000000
	A1	1.1426799
	A2	41266880
3	B1	2.0000000
	B2	1.0000000
	A1	1.4040881
	A2	73584180

Filter Type - 20 Hz LP - 6 Pole Butterworth Overall gain = 0.10327551E-01

Section	Coefficient ID	Coefficient
1	B1	2.000000
	B2	1.0000000
	A1	.32172718
	A2	42338575E-01
2	B1	2.0000000
	B2	1.0000000
	A1	.36908114
	A2	19575694
3	B1	2.0000000
	B2	1.0000000
	A1	.49536759
	A2	60490249

Filter Type - 40 Hz LP - 6 Pole Butterworth Overall gain = 0.28954554

Section	Coefficient ID	Coefficient
1	B1 B2 A1 A2	2.0000000 1.0000000 -1.0323635 27585586
2	B1 B2 A1 A2	2.0000000 1.0000000 -1.1432811 41293440
3	B1 B2 A1 A2	2.0000000 1.0000000 -1.4046815 73598857

Coefficients for Detector High-Pass Filters

Defines for detector high pass filters.

The high pass filter coefficients are for 2 pole Butterworth. The 0.1 Hertz filter is typical:

Filter Type Analog Filter Type Passband Ripple in dB Stopband Ripple in dB Passband Cutoff Frequency Stopband Cutoff Frequency Sampling Frequency Filter Design Method Filter Order Number Of Sections No. Of Quantized Bits Quantization Type High Pass Butterworth -3.0000 (maximum attenuation) -20.0000 (minimum attenuation) 0.100000E+00 Hertz 0.100000E+01 Hertz 0.100000E+03 Hertz Bilinear Transformation 1 (0001h) 1 (0001h) 32 (0020h) Floating Point Filter Type - 0.1 Hz HP - 2 Pole Butterworth Overall gain = 0 .99687564

Section	Coefficient ID	Coefficient
1	B1	-1.0000000
	B2	.00000000
	A1	.99375128
	A2	.00000000

Filter Type - 0.2 Hz HP - 2 Pole Butterworth Overall gain = 0.99377068

Section	Coefficient ID	Coefficient
1	B1	-1.0000000
	B2	.00000000
	A1	.98754136
	A2	.00000000

Filter Type - 0.5 Hz HP - 2 Pole Butterworth Overall gain = 0.98456982

Section	Coefficient ID	Coefficient
1	B1	-1.0000000
	B2	.00000000
	A1	.96913965
	A2	.00000000

Filter Type - 1.0 Hz HP - 2 Pole Butterworth Overall gain = 0.96960132

Section	Coefficient ID	Coefficient
1	B1	-1.0000000
	B2	.00000000
	A1	.93920263
	A2	.00000000

Filter Type - 2.0 Hz HP - 2 Pole Butterworth Overall gain = 0.94094138

Section	Coefficient ID	Coefficient
1	B1	-1.0000000
	B2	.00000000
	A1	.88188277
	A2	.00000000

Filter Type - 4.0 Hz HP - 2 Pole Butterworth Overall gain = 0.88807599

Section	Coefficient ID	Coefficient
1	B1	-1.0000000
	B2	.00000000
	A1	.77615197
	A2	.00000000

Coefficients for Short Period High-Pass Filters

Filter Type - 0.01 Hz 2nd Order High Pass Overall gain = 0.99955634

Section	Coefficient ID	Coefficient
1	B1	-2.0000000
	B2	1.00000000
	A1	1.9991125
	A2	99911287

Filter Type - 0.03 Hz 2nd Order High Pass Overall gain = 0.99853666

Section	Coefficient ID	Coefficient
1	B1	-2.0000000
	B2	1.00000000
	A1	1.9970712
	A2	99707546

Filter Type - 0.05 Hz 2nd Order High Pass Overall gain = 0.99778365

Section	Coefficient ID	Coefficient
1	B1	-2.0000000
	B2	1.00000000
	A1	1.9955624
	A2	99557222

Filter Type - 0.1 Hz 2nd Order High Pass Overall gain = 0.99557222

Section	Coefficient ID	Coefficient
1	B1	-2.000000
	B2	1.00000000
	A1	1.9911248
	A2	99116405

Filter Type - 0.33 Hz 2nd Order High Pass Overall gain = 0.98533139

Section	Coefficient ID	Coefficient
1	B1	-2.0000000
	B2	1.00000000
	A1	1.9704476
	A2	97087797

Filter Type - 0.5 Hz 2nd Order High Pass Overall gain = 0.97805625

Section	Coefficient ID	Coefficient
1	B1	-2.000000
	B2	1.0000000
	A1	1.9556309
	A2	95659409

Coefficients for Short Period Low-Pass Filters

Filter Type - 2.0 Hz Low Pass, 49 Tap

Тар	Coefficient	Тар	Coefficient
0	.1847790554165840E-04	25	.5526728648692369E-01
1	.6602099165320396E-04	26	.5376566387712955E-01
2	.1553162001073360E-03	27	.5134600773453712E-01
3	.3287140280008316E-03	28	.4812619043514132E-01
4	.6151492707431316E-03	29	.4425870627164841E-01
5	.1070894300937653E-02	30	.3991939406841993E-01
6	.1747058238834143E-02	31	.3529527876526117E-01
7	.2709977794438601E-02	32	.3057175269350410E-01
8	.4020278342068195E-02	33	.2592153614386916E-01
9	.5740075837820768E-02	34	.2149442397058010E-01
10	.7917591836303473E-02	35	.1741105038672686E-01
11	.1058717863634229E-01	36	.1375780487433076E-01
12	.1375780487433076E-01	37	.1058717863634229E-01
13	.1741105038672686E-01	38	.7917591836303473E-02
14	.2149442397058010E-01	39	.5740075837820768E-02
15	.2592153614386916E-01	40	.4020278342068195E-02
16	.3057175269350410E-01	41	.2709977794438601E-02
17	.3529527876526117E-01	42	.1747058238834143E-02
18	.3991939406841993E-01	43	.1070894300937653E-02
19	.4425870627164841E-01	44	.6151492707431316E-03
20	.4812619043514132E-01	45	.3287140280008316E-03
21	.5134600773453712E-01	46	.1553162001073360E-03
22	.5376566387712955E-01	47	.6602099165320396E-04
23	.5526728648692369E-01	48	.1847790554165840E-04
24	.5577631527557969E-01		

Filter Type - 4.0 Hz Low Pass, 25 Tap

Тар	Coefficient	Тар	Coefficient
0	.4290370270609856E-04	13	.1074210507795215E+00
1	.3287829458713531E-03	14	.9617159143090248E-01
2	.1257671974599361E-02	15	.7979846047237515E-01
3	.3535681869834661E-02	16	.6114466581493616E-01
4	.8094430435448885E-02	17	.4302348755300045E-01
5	.1589526422321796E-01	18	.2757020341232419E-01
6	.2757020341232419E-01	19	.1589526422321796E-01
7	.4302348755300045E-01	20	.8094430435448885E-02
8	.6114466581493616E-01	21	.3535681869834661E-02
9	.7979846047237515E-01	22	.1257671974599361E-02
10	.9617159143090248E-01	23	.3287829458713531E-03
11	.1074210507795215E+00	24	.4290370270609856E-04
12	.1114315604791045E+00		

Filter Type - 6.0 Hz Low Pass, 17 Tap

Тар	Coefficient	Тар	Coefficient
0	3161747008562088E-04	9	.1601552157662809E+00
1	.3960728645324707E-03	10	.1215184866450727E+00
2	.3477729391306639E-02	11	.7551832869648933E-01
3	.1393289258703589E-01	12	.3736245818436146E-01
4	.3736245818436146E-01	13	.1393289258703589E-01
5	.7551832869648933E-01	14	.3477729391306639E-02
6	.1215184866450727E+00	15	.3960728645324707E-03
7	.1601552157662809E+00	16	3161747008562088E-04
8	.1753408308140934E+00		

Filter Type - 8.0 Hz Low Pass, 17 Tap

Тар	Coefficient	Тар	Coefficient
0	4241876304149628E-03	9	.1908182715997100E+00
1	2151188440620899E-02	10	.1293795686215162E+00
2	4567528609186411E-02	11	.6319340923801064E-01
3	1857914496213198E-02	12	.1757202530279756E-01
4	.1757202530279756E-01	13	1857914496213198E-02
5	.6319340923801064E-01	14	4567528609186411E-02
6	.1293795686215162E+00	15	2151188440620899E-02
7	.1908182715997100E+00	16	4241876304149628E-03
8	.2160750874318182E+00		

Filter Type - 12.0 Hz Low Pass, 11 Tap

Тар	Coefficient	Тар	Coefficient
0	2385237254202366E-02	6	.2334622116759419E+00
1	5129145924001932E-02	7	.1068860120140016E+00
2	.1891528023406863E-01	8	.1891528023406863E-01
3	.1068860120140016E+00	9	5129145924001932E-02
4	.2334622116759419E+00	10	2385237254202366E-02
5	.2965017217211425E+00		

Filter Type - 16.0 Hz Low Pass, 11 Tap

Тар	Coefficient	Тар	Coefficient
0	5763957742601633E-02	6	.2678682846017182E+00
1	2192187542095780E-01	7	.9180865343660116E-01
2	1211254531517625E-01	8	1211254531517625E-01
3	.9180865343660116E-01	9	2192187542095780E-01
4	.2678682846017182E+00	10	5763957742601633E-02
5	.3602429009042680E+00		

Filter Type - 18.0 Hz Low Pass, 7 Tap

Тар	Coefficient
0	2312555490061641E-01
1	.1762509671971202E-01
2	.2731195287778974E+00
3	.4647618806920946E+00
4	.2731195287778974E+00
5	.1762509671971202E-01
6	2312555490061641E-01

Filter Type - 20.0 Hz Low Pass, 5 Tap

r	
Тар	Coefficient
0	3399344859644771E-01
1	.2500019017606974E+00
2	.5679830652661622E+00
3	.2500019017606974E+00
4	3399344859644771E-01

This page intentionally left blank

APPENDIX D

ICP SYSTEM location response table

This page intentionally left blank

HOW TO GENERATE AN ICP LOCATION RESPONSE TABLE

Introduction

A response table is a collection of amplitude vs. frequency values within a given passband for a specific system. The system response function characterizes the entire system which includes sensor and data acquisition components. These unique characteristics are required for accurate location analysis and must be defined by the operator.

Creating a unique table can be accomplished several different ways, either by editing an existing properly formatted response file or simply executing Seisan's RESP.EXE file. Geotech supports this format and modifies it for further table manipulation and data conversion. To initiate the program, the operator must execute the RESP.EXE file which is located in the ICP directory. For more information about the response program, reference The Seisan Earthquake Analysis Software manual.

Creating Response Table files

At the DOS command prompt, toggle to full screen mode by holding down the ALT key and press ENTER).

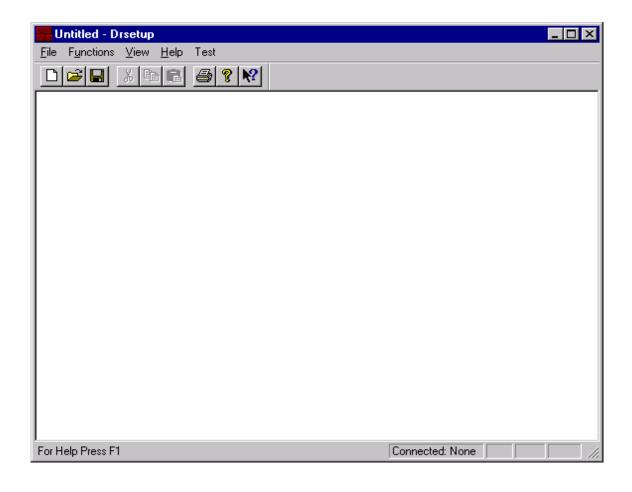
From the ICP directory:

- 1) Type *RESP* to run the response program.
- 2) Answer the relevant questions.
- 3) Rename the output file (RESPONSE.OUT) to RTABX.DAT where X is an identifier for each unique sensor/system. It is possible to have ten separate files. ie. RTAB1.DAT, RTAB2.DAT, RTAB3.DAT, etc. Note: Every time you run the RESP program a new RESPONSE.OUT file is created which erases the earlier output file.
- After you have created the desired number of RTABX.DAT files then: Type CRETABLE This program generates a file named RESPONSE.DAT which is used by the ICP system.

This page intentionally left blank

APPENDIX E

CONFIGURATION REQUIREMENTS FOR THE DR-24 REMOTE ACQUISITION SYSTEM


This page intentionally left blank

CONFIGURATION REQUIREMENTS FOR THE DR-24

REMOTE ACQUISITION SYSTEM

INTRODUCTION

Configuring the remote acquisition system (DR-24) is made simple using the DRSETUP software. To view the main setup window as shown in Figure E-1, click on the DRSETUP icon. Several of the tool and status bar selections have the same look and functionality as other *MicroSoft Windows* or *WindowsNT* applications. Only the **Functions** selection will be discussed since this option is unique to the DR-24 acquisition system.

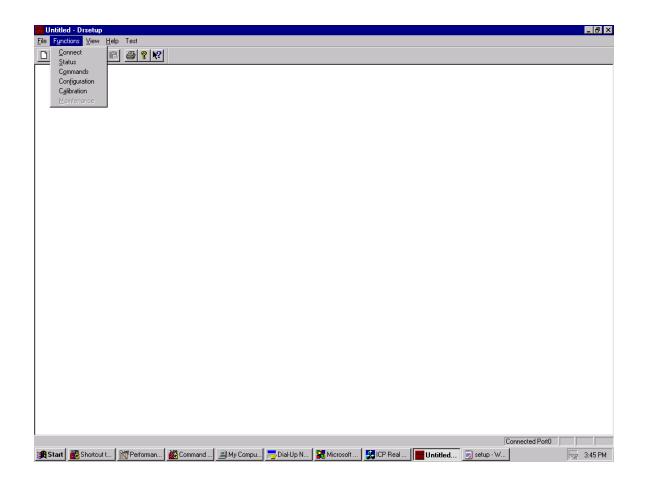


Figure E-2 Functions pull down menu screen

The **Functions** selection on the status bar has five applicable options, **Connect**, **Status**, **Commands**, **Configuration**, **and Calibration** as indicated in Figure E-2.

CONNECT

Initially, the **Connect** option is the only selection that is available. The other options depend on the successful connection to the DR-24 for system feedback. After selecting Connect, the menu shown in Figure E-3 pops up. This menu allows the operator to connect to a particular predefined station (defined in the ICP setup) by selecting the station from a list and activating the ONLINE option. Selecting the OK button forces the connection to that station. If communication to that station is successful then the other options in the Functions group become active, otherwise a No Response flag will be displayed. The bottom status bar displays which station is connected.

CONNECT	×
Connect To Port0 ONLINE: © OFFLINE: ©	Station List Port0 (F001sdF001S F001A) Port1 (F002sdF002S F002A) Port2 (F003sdF003S F003A) Port3 (F004sdF004S F004A) Port4 (F000whF000D F000T)
	OK Cancel

Figure E-3 Connect menu

STATUS

Selecting **Status** from the **Functions** group displays three configuration options for the attached station. Information regarding system hardware configuration is presented in the **Hardware** window. Figure E-4 details the hardware specific information that is retrieved from the station. As indicated in the figure, a user can determine system configuration of a specific station.

Status						
HARDWARE State of He	alth GPS Info	ormation				
Serial Number:	1010	ADC 0 Found	YES			
DSP Found	NO	ADC 0 PB Found	NO			
Expansion Enabled	NO	ADC 1 Found	NO			
PCMCIA Found	NO	ADC 1 P.B Found	NO			
PC Card In Slot 0	NO	Modem On Local S.P.	NO			
PC Card In Slot 1	NO	Modem On GP.S.P.	NO			
PC Card In Slot 2	NO	Modem On Slot 0	NO			
SCSI Found	NO	Modem On Slot 1	NO			
External Bus Enabled	NO	Modem On Slot	NO			
Calibrator Found	NO	D-Series Type	IS-24			
		Software Version	01.00			
Accepted	REFRESH	CLOSE				

Figure E-4 Hardware Status pop up screen

State of Health

Selecting the **State of Health** option in the **Status** window displays another set of system parameters as shown in Figure E-5. The information displayed serves as a monitoring function for the acquisition system. The window displays several voltage values, temperature measurements, and other system specific information. There are several reserved SOH fields for future implementation.

Status					×
HARDWARE	State of Health	GPS Info	ormation]		
Spare CPU Temp Vpp Supply -15V Supply +15V Supply -5V Supply +5V Supply Ext. Supply	1.111 29.487 4.507 -15.031	Volts Deg C Volts Volts Volts Volts Volts Volts	Event Input Exp. Temp SOH 10 SOH 11 SOH 12 SOH 13 SOH 14 SOH 15	Open 0.000 C N/A N/A N/A N/A N/A N/A	Deg C
Accepte	d RE	FRESH	CLOSE		

Figure E-5 State of Health status window

To obtain timing information, select the **GPS Information** option in the **Status** window. GPS status information, synchronization selection criteria, and system positioning data are displayed in this window as shown in Figure E-6 This screen allows the operator to monitor GPS functions and determine if their timing source is operational. GPS specific fields become inactive if an external timing source is used other than GPS.

ARDWARE State	e of Health GPS Inf	ormation	
Sync Mode	GPS	Difference	0
Clock Status	Locked	Ext Input	Present
Power	ON	latitude	+32.895809
Locked	, Locked	Longitude	-95.305321
Error	0	Altitude	192
Source	GPS 3D	Heading	0
Age	New	UTC Offset	11
Speed	0	UTC Valid	Valid
Vertical Velocity	0	Usable SV	4
Accepted	REFRESH	CLOSE	

Figure E-6 GPS status Information

Command

Click on **Command** in the **Functions** group to display eight command operations. The window shown in Figure E-7 displays the options in the Command field that can control selected operations of the acquisition system. This figure also shows the selected command, **Acquisition**, that is used to control whether or not the DR-24 is in acquisition mode.

Command			×
Cold Reset Acquisition	Warm Reset Relays	Power Off Vpp Supply	Flush Data LED Display
COMMAND [DESCRIPTION:		
	 Start Stop 		
	e crop		
-	EXECUTE	CLOSE	IELP

Figure E-7 Acquisition command menu

Selecting an input for the DR-24 can be accomplished through the **Relays** command selection as shown in Figure E-8. Three input options are available, a shorted input, a loop back, and a signal source The loop back (L.B.) circuit is only functional when an optional calibrator board is installed. Issuing the L.B. command without a calibrator board trips the input relays which causes an open circuit to the analog front end. With a calibration board, the predefined calibration schedule is executed and feed back to the analog circuitry in the DR-24 instead of being applied to a sensor. Data acquired from this configuration is recorded as a data file not a calibration file.

The operator can control three of the four LED's (Time, Memory, and Status) in the DR-24 by selecting the **LED Display** option. To conserve power and reduce noise, execute the OFF button in this window to turn the LED's off.

The **Vpp Supply** selection in the **Command** window allows the operator to control and monitor the Vpp FLASH programming voltage level. This voltage will change from 5 volts to 12 volts for approximately two minutes and is used for test or maintenance.

Re-initializing the system can be accomplished by either a **Warm Reset** or a **Cold Reset**. Executing a warm reset causes the DR-24 to terminate data acquisition and allow the firmware to re-initialize its software parameters without loss of time synchronization. A cold reset command re-initializes the software and the hardware as it restarts the system.

The **Power Off** option terminates all data acquisition functions and turns the DR-24 completely off. An instrument can only be turned back on manually once this command has been issued.

Command			×
Cold Reset Acquisition	Warm Reset Relays	Power Off Vpp Supply	Flush Data LED Display
COMMAND	DESCRIPTION		
Enable	e Sig L.B. Short		
0(F001sd) 🔽	• • •		
	EXECUTE		HELP

Figure E-8 Relays Command setup screen

The **Configuration** option in the **Function** group consists of three additional system configuration requirement windows. The selections are **Communications**, **Channels**, and **Time**. The Communications window, shown in Figure E-9 is used to display the present configuration for the data transmission link, its protocol and identifies which port it applies to. The configuration of these ports can only be changed using the DRIaptop software. The Local port baud rate is the rate at which the DR-24 communicates with its attached terminal (serial port interface) and the Main baud rate is the connection rate that the DR-24 uses to connect to the ICP system.

Configuration X								
Port	Data	Format	Baud	Protocol	Тx	Rx	С	U
Local		HLCP 💌	9600 💌	HLCP 🔽	•	◄	◄	₽
Main	V	HLCP -	19200 💌	HLCP -	◄			◄
PC Slot 0		Data TX 💌	9600 💌	ALCP -				
PC Slot 1		Data TX 💌	9600 💌	ALCP -				
PC Slot 2		Data TX 💌	9600 🔻	ALCP -				
Accepted		CONFIGURI	E	CLOSE		HE	LP	

Figure E-9 Communications Configuration menu

Selecting sample rate parameters and configuring them to specific channels can be accomplished by enabling the **Channels** option from the **Configuration** group. As shown in Figure E-10, sample rates are selected (50 or 100 sps) and individually configured to each predefined channel. All channels in a DR-24 must have the same sample rate or be disabled.

Configuration			×
Communications	Channels	Time	
Channel No	Enabled	Sample Rate	
0(MAC1)		50 🖵	
1 (MAC2)		50 -	
2(MAC3)		50 -	
Accepted	CONF		HELP

Figure E-10 Channel Configuration setup screen

Several time synchronization options are available in the **Time** selection of the **Configuration** group. As shown in Figure E-11, *GPS Cycle Time* and *Jam Set Threshold* are fields requiring input information if the GPS sync mode is selected. The GPS cycle time field allows the operator to specify the amount of time that must elapse before turning on the GPS receiver again after its last successful GPS lock.

The Jam Set parameter defines a condition in which the difference between the GPS reference and the DR-24's internal clock must exceed before a jam set occurs. When this condition is meet, the DR-24 will correct the time difference to less than the jam set threshold in one step and continue to adjust its internal time until the time difference is minimal. The operator can also set time manually by entering the required information in the **Time** fields and execute it by using the **Send** command.

Configuration	×
Communications	Channels Time
Sync Mode	
C None	GPS Cycle Time 0 Seconds
C Ext. 1pps GPS	Jam Set Threshold 10 mSec
Time Set	Time(month day year) Time (hourmin sec)
	Send
Accepted	CONFIGURE CLOSE HELP

Figure E-11 Time Configuration setup screen

Select **Calibration** in the **Function** group to define the type and duration of a calibration signal for a specific channel. As shown in Figure E-12, select **Immediate** to generate a calibration signal instantly. After selecting *Start*, the operator can define the desired calibration signal and determine whether or not it should be applied to a particular channel. A *Send* command will execute the calibration signal the acquisition mode reverts back to the *Sensor* mode. If an immediate calibration command is received while another calibration is already in progress it will be rejected. The selection of calibration signals are 1)Sinewave, 2) Noise, 3) Pulse, 4) Random Pulse, and 5) Shorted Input. However, without a calibration board many of these calibration types are not available.

Calibration Immediate Scheduled	×
Channel Configuration	
Channel Enable Sensor Loopback Short 0(F001sd) 🗖 O O O	Cal Signal Sine,Immediate Duration Cal Param Start St
Accepted Send	CLOSE HELP

Figure E-12 Immediate calibration setup screen

Calibration	×
Immediate Scheduled	,
Channel Configuration	
Channel Enable Sensor Loopback Short Cal Signa	
0(F001sd) 🗖 O O O Start T	
Duration	0 Second 💌
Interval	0 Second 💌
Reptitions	0
Amplitude	0 Volts
C Enable 💿 Disable Index 0 💌 Cal Param	0 Freq
Accepted Send CLOS	E HELP

Figure E-13 Schedule calibration setup screen

The **Scheduled** option, shown in Figure E-13, allows the operator to plan and execute calibration episodes. Several parameters are required to be entered for the various types of calibration options.

Start Time defines the beginning time of the first calibration of the schedule.

Duration defines how long the calibration will run.

Interval is a parameter defining a period of time from the start of one calibration event to the next one.

Repetition defines the number of times a scheduled calibration will occur. The maximum value for this field is 65,535.

Amplitude, expressed in volts, sets the output magnitude of the selected calibration source.

Cal Parameter is a parameter defining the frequency of the sinusoidal calibration signal.

After entering the details about a calibration requirement, it can be stored into one of the possible 32 index options by enabling the **Index** window. This allows the operator to retain multiple calibration configurations without having to create them more than once.